Land-Based Effluent Disposal Assessment Report and MEDLI 2.0 Modelling

Lake Vermont Meadowbrook Project

M31991

Prepared for AARC Environmental Solutions Pty Ltd

16 March 2022

Contact Information

Document Information

Cardno (QId) Pty Ltd ABN 57 051 074 992	Prepared for	AARC Environmental Solutions Pty Ltd
Level 11 515 St Paul's Terrace	Project Name	Lake Vermont Meadowbrook Project
Fortitude Valley QLD 4006 Australia	File Reference	M31991 Land-Based Effluent Disposal Assessment Report 16032022.docx
www.cardno.com Phone +61 7 3369 9822	Job Reference	M31991
Fax +61 7 3369 9722	Date	16 March 2022
	Version Number	03
Author(s):		
Author(s): Jennifer Soledad Environmental Scientist	Effective Date	16/03/2022
Jennifer Soledad	Effective Date	16/03/2022

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
01	24/02/2022	Draft for Client Comment	JS/AW	MF
02	02/03/2022	Final	JS/AW	MF
03	16/03/2022	Revised Final	JS/AW	MF

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

2Aim of the Assessment2.1Objectives2.2Scope of Work2.3Fundamentals of MEDLI 2.03Desktop Assessment3.1Preferred Irrigation Location	7 7 7 9 9 9 9 10 10 11
2.2 Scope of Work 2.3 Fundamentals of MEDLI 2.0 3 Desktop Assessment	7 9 9 9 9 10 10
2.3 Fundamentals of MEDLI 2.03 Desktop Assessment	7 9 9 9 10 10
3 Desktop Assessment	9 9 9 10 10 11
•	9 9 10 10 11
3.1 Preferred Irrigation Location	9 9 10 10 11
	9 10 10 11
3.2 Climate	10 10 11
3.3 Topography, Drainage and Groundwater	10 11
3.4 Onsite Vegetation and Habitat	11
3.5 Sensitive Receptors	
4 Wastewater Characteristics	
4.1 Wastewater Quantity	11
4.2 Wastewater Quality	11
5 Irrigation Area Investigation	12
5.1 Sampling Procedure	12
5.2 Hydraulic Conductivity Estimations	12
5.3 Laboratory Analysis	12
6 Irrigation Area Investigation Results	13
6.1 Irrigation Area Description	13
6.2 Chemical and Physical Analysis	14
7 Desktop AS1547 Assessment	18
7.1 Selection Criteria	18
7.2 Design Criteria	20
8 MEDLI 2.0 Modelling – Mine Operational Period	21
9 Aerosols, Pathogens, Odours and Toxins	23
9.1 Aerosols and Pathogens	23
9.2 Odour	23
9.3 Toxins	23
10 Wastewater Treatment Options	25
10.1 Standard of Wastewater Treatment	25
10.2 Package Treatment Plant Options	25
11 Irrigation Area Management	26
11.1 Spray Irrigation Specifications	26
11.2 Buffer Distances	26
11.3 Maintaining Pasture	26
11.4 Monitoring Program	27
11.5 Managing Soil Permeability	27

		11.6	Managing Soil Sodicity	27
1:	2	Conclus	ions	28
		12.1	Disposal Area Size and Storage Requirements	28
		12.2	Location of Disposal Area	28
		12.3	Managing Pathogen Exposure Risk	28
		12.4	Managing Soil Permeability	28
		12.5	Managing Soil Sodicity	28
		12.6	Standard of Assessment and Limitations	28
1:	3	Referen	ces	29

Appendices

Appendix A	Figures
Appendix B	Test Pit Logs
Appendix C	Site Photographs
Appendix D	Laboratory Results
A	

- Appendix E MEDLI 2.0 Output File
- Appendix F Example of Spray Irrigation System

Tables

Table 4-1	Wastewater Quality Estimations: Source ERA 63 Eligibility Criteria Standard Conditions	11
Table 4-2	Wastewater Quality Estimates – Secondary Treated Effluent	11
Table 6-1	Default Grey Clay Hydraulic Conductivities from MEDLI 2.0	14
Table 6-2	Physical Water Holding Capacity Parameters entered into MEDLI	15
Table 6-3	Soil Nutrient Concentrations	15
Table 6-4	Chemical Analysis Results	16
Table 6-5	Soil salinity EC_{se} , and $EC_{1:5}$ for four ranges of soil clay content (adapted from Shaw et al. 19	987). 16
Table 6-6	Criteria for classifying sodicity in soils (from Northcote and Skene 1972).	17
Table 7-1	Selection Criteria for Irrigation Systems (Appendix K or AS/NZS 1547:2012)	19
Table 8-1	Mine Operational Period Extreme Impermeable MEDLI 2.0 Input Parameters	21
Table 9-1	Examples of how pathogen log reduction targets can be achieved for Municipal Irrigation systems (Source – National Guidelines for Water Recycling)	24
Table 10-1	Classes of Recycled Water	25

Figures

Figure 3-1	Climate Data interpolated for the site 1970–2017. Source: Queensland Government climate data (SILO).	9
Figure 6-1	Vegetation at proposed effluent disposal area	13

Figure 6-2	Soil structure at proposed effluent disposal area	14
Figure 6-3	Reproduction of Figure 40 from the Salinity Management Handbook: The threshold lines for soils of different clay content and mineralogy for an annual rainfall of 1000mm/yr.	⁻ two 17
Figure 8-2	Grass Dry Weight Yield and Waterlogging Stress (extracted from MEDLI 2.0 output file)	22

1 Introduction

Cardno were commissioned by AARC Environmental Solutions Pty Ltd (AARC) to undertake land-based irrigation modelling using the Model for Effluent Disposal Using Land Irrigation (MEDLI 2.0) version 2.0 for the Lake Vermont Meadowbrook Project (the Project).

The proposed Meadowbrook Project is an extension of the Lake Vermont open cut coal mine located approximately 25km north of Dysart and 160km south-west of Mackay. The proposed Project includes:

- An underground and open cut pit mine with a workshop and Mine Infrastructure Area (MIA) including a Sewage Treatment Plant (STP);
 - On-site ablutions for daily workforce, including a bathhouse for the underground workforce;
- > An operational workforce of 410 accommodated off-site;
 - Expected maximum workforce on site of 200 equivalent persons (EP) at any one time; and
 - Workforce wastewater generation of 200L/person/day.

The Project location is shown in Figure 1, Appendix A.

Workers will generate domestic wastewater from staff facilities. The wastewater will include that which is generated from the use of toilets (often classed as black water) as well as wastewater produced from showers, kitchen facilities and laundries (often classed as grey water). It is important to recognise that this domestic wastewater does not include mine affected water or sediment-laden water, which will be stored and handled in a separate manner.

1.1.1 Environmental Authority Requirements

Given that the wastewater systems at the Meadowbrook Project site will cater for more than 21 Equivalent Persons (EPs) (1 EP = 200 L/day), the activity triggers Environmental Relevant Activity (ERA) 63 for sewage treatment to be added as an ancillary activity to the resource activity Environmental Authority (EA) being sought from the Department of Environment and Science (DES).

An application for ERA 63 must provide supporting technical information in accordance with the DES *Guideline Application requirements for activities with impacts to land*. This guideline encourages the applicant to:

- Design a sustainable system in accordance with Australian New Zealand Standard AS/NZS 1547:2012 On-site domestic wastewater management; and
- > Undertake validation modelling of the system based on local land and rainfall factors. The recommended model being the Model for Effluent Disposal using Land Irrigation (MEDLI 2.0) Version 2.0.

This report therefore centres around AS/NZS 1547:2012 and validation MEDLI 2.0 modelling of the irrigation site for the Meadowbrook Project.

2 Aim of the Assessment

2.1 Objectives

The principal objectives of this assessment are to:

- Characterise the estimated wastewater flow rates and treated wastewater quality in terms of Total Nitrogen, Total Phosphorus, Total Dissolved Salts, Electrical Conductivity, pH, E coli concentrations, Total Suspended Solids, and Biochemical Organic Demand (5 day);
- > Use a suitable water balance model, specifically the Model for Effluent Disposal via Land Irrigation (MEDLI 2.0) to arrive at the appropriate sustainable wet weather storage volume and area to be irrigated with treated sewage based on the quantity and quality of the treated sewage to be irrigated; and
- Account for and manage potential impacts of treated sewage irrigation on surface and groundwater and other environmental values and describe how these impacts will be mitigated so as not to cause environmental harm or adversely affect relevant environmental values and water quality objectives.

2.2 Scope of Work

The scope of this assessment is limited to assessing the suitability of land areas within the Lake Vermont Meadowbrook Project site for effluent disposal via irrigation. The assessment consisted of:

- A desktop review of site topography, hydrology and soil type to select the most suitable effluent disposal area;
- Using AS1547: 2012 to estimate the irrigation rate using soil condition assumptions obtained during the review;
- > Sampling and analysis of the soil profile within the intended effluent disposal area to assess soil characteristics;
- > Calculating expected wastewater quality and generation rates for the Project;
- Obtaining site-specific climate data for the Lake Vermont region (particularly rainfall and evaporation rates);
- > Determining the feasibility of using an irrigation system in accordance with AS/NZ 1547:2012;
- > Verifying the suitability of the irrigation system using MEDLI 2.0; and
- > Providing recommendations to improve the performance of the irrigation system.

This report does not include provision for a Site Based Management Plan applicable to the ongoing operation of a wastewater disposal system. Prior to commissioning, a management document detailing the ongoing maintenance, emergency response and contingency plans will be required.

2.3 Fundamentals of MEDLI 2.0

Irrigation modelling systems offer a way of validating and refining irrigation systems designed in accordance with AS 1547:2012. Daily time step simulation models such as MEDLI 2.0 are generally considered a requirement by DES in assessing ERA 63 applications. For this assessment, version 2.0 of MEDLI has been used.

2.3.1 MEDLI 2.0 Background

MEDLI 2.0 is a modelling program that simulates the complex dynamics of the effluent cycle on a daily time step using historical daily climatic data. MEDLI 2.0 simulates the behaviour of water and nutrients in the soil column and the growth of irrigated pastures or crops in response to climatic conditions and nutrient and salt loadings. MEDLI 2.0 can be used to determine the required irrigation area, the likely stresses on irrigated vegetation and the concentration of nutrients below the root zone. The model incorporates historic climate information (temperature, rainfall, evaporation, and solar radiation), estimates of effluent quality and quantity, and soil properties. Modelling provides a means of identifying the potential environmental impacts of the proposed effluent treatment system. Actual outcomes may depend on aspects of geology, soils and groundwater not able to be ascertained by this level of assessment as well as proposed irrigation methods and actual management practices in the field.

Effluent modelling allows the identification of anticipated weaknesses in the wastewater disposal scheme, providing the opportunity to explore alternative solutions until a suitable and robust design is found.

2.3.2 MEDLI 2.0 Modelling Objectives

An optimal effluent management system will have the following outcomes:

- > Wet weather storage tank overflow events will be negligible in frequency and volume;
 - 95% reuse (irrigation) of effluent (99.5% re-use is ideal);
 - No overflow events shall be greater than 1mm worth of the tank volume (i.e. in this case the tank surface area is 55m² and therefore 1 mm of the tank volume equates to 55 L); and
 - Overflow should be experienced less than 10 days per year;
- > No surface runoff of irrigated effluent;
- > Less than 5kg/ha/year of nitrate is to be lost in deep drainage;
- Limit phosphorus in effluent irrigation such that soil adsorption capacity is not exceeded within the life of the Project;
- > Build-up of salinity in the soil profile should not impede the growth of pasture; and
- > Any pasture die-off events resulting from water stress, waterlogging, temperature stress or nitrogen stress are minimised to be as close as possible to zero.

3 Desktop Assessment

3.1 Preferred Irrigation Location

The STP and associated wet weather storage for the Project will be constructed within the MIA. Sewage which has been treated by the STP will be piped to the effluent disposal area.

The area being investigated for treated effluent disposal is located on Lot 102 Plan SP310393, close to the central western boundary of the lot, within the northern area of the MIA (borehole locations A, B, and C in Figure 2, **Appendix A**). This area has been proposed as an effluent treatment area because:

- > It is within close proximity of the sewage treatment plant, the primary source of the wastewater; therefore, minimising pumping and pipe infrastructure requirements;
- > There is sufficient space to allow for placement of the disposal area, maintaining large buffers from sensitive receptors such as One Mile Creek and other waterways, ecosystems and the public;
- > Given the effluent disposal area will be located within the MIA, it will be contained within a bunded area which is protected from the 1% annual exceedance probability (AEP) rain event. The MIA will also already be subjected to disturbance and clearing therefore the project will not involve irrigation of regional ecosystems/communities/habitat.

3.2 Climate

Climate data was obtained from the Queensland Government Scientific Information for Land Owners (SILO). The data represents the nearest SILO grid point (latitude -22.40, longitude 148.40) and interpolates data from the nearest climate stations. The data includes evaporation rates, rainfall and maximum and minimum temperatures for a period of 48 years from 1970 to 2017.

Lake Vermont Mine has a relatively dry climate, with evaporation rates exceeding rainfall throughout the year. A distinctive dry/wet season pattern is observed, whereby the winter/spring period from April to October is traditionally dry, with monsoonal rainfall received over the summer months from November to February. During the wet season, the evaporation rates still exceed rainfall rates. Climate data has been summarised below in Figure 3-1.

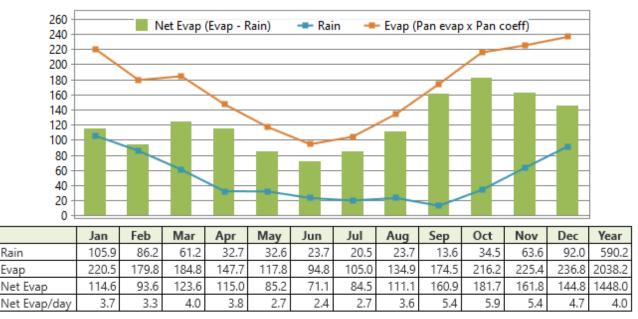


Figure 3-1 Climate Data interpolated for the site 1970–2017. Source: Queensland Government climate data (SILO).

3.3 Topography, Drainage and Groundwater

Geology of the irrigation investigation area has been classified as 'TQa' i.e. Quaternary colluvium, comprising 'locally red-brown mottled, poorly consolidated sand, silt, clay, minor gravel; high-level alluvial deposits (generally related to present stream valleys but commonly dissected)' (source: Queensland Globe).

The investigation area slopes gently downgradient toward the east, with an elevation of approximately 175m Australian Height Datum (AHD). The investigation area does not contain any drainage lines of significance. One Mile Creek is located approximately 500m southeast of the investigation area. A minor, ephemeral tributary of One Mile Creek flows in an assumed north-easterly direction approximately 350m south of the investigation area. The topography and water courses surrounding Lake Vermont Mine is presented in Figure 3, **Appendix A.**

Queensland Globe mapping data does not indicate the presence of any Groundwater Dependent Ecosystems (GDEs) at the site. The nearest registered groundwater bores are located approximately 3.2km to the southwest and thus unlikely to reflect local conditions but based on the data from the closest bore's groundwater may be between 9 - 25m below ground level.

The site and surrounding regional area are classified as 'Isaac western upland tributaries' under the Queensland Environmental Protection Policy for water and wetland biodiversity. The Isaac River is located 12km to the northeast and downgradient of the site, and is fed by tributaries One Mile Creek and Hughes Creek. A wetland of high ecological significance is present approximately 10.3 km northeast and downgradient of the site, adjacent to a section of Hughes Creek.

3.4 Onsite Vegetation and Habitat

In order to construct the MIA, the vegetation/ecosystems it contains will be subject to disturbance and clearing, and the intent is to irrigate this disturbed land. However, it is still important to identify adjacent vegetation and habitat in order to protect it from impacts.

The vegetation which will remain around the proximity of the MIA is mapped in Figure 4, **Appendix A**. The mapping identifies the following Regional Ecosystems (REs):

- > 11.4.9 (Endangered) Acacia harpophylla shrubby woodland with Terminalia oblongata on Cainozoic clay plains;
- > 11.5.3 (Least Concern) Eucalyptus populnea, E. melanophloir and Corymbia clarksoniana woodland; and
- > 11.4.8 (Endangered) Eucalyptus cambageana woodland to open forest with Acacia harpophylla or A. argyrodendron.

REs 11.4.9 and 11.4.8 are also referred to as Brigalow Threatened Ecological Communities (TECs).

The area around the MIA is also mapped as having high amenity habitat value for the Ornamental Snake.

Accounting for the fact the vegetation within the MIA will be pre-cleared/disturbed the proposed effluent disposal area will be located at least 50 m from the closest terrestrial RE / TEC / habitat. A buffer zone of at least 50 m is considered to be suitable to protect residential properties from any adverse effects from spray drift in accordance with the QLD Government Technical Guideline for Disposal of Effluent via Irrigation, and therefore considered to be applicable to protection of terrestrial ecosystems.

3.5 Sensitive Receptors

No residential houses appear to be located within 1km of the proposed irrigation area and no onsite accommodation is proposed in the MIA. As such, the risk of exposure to aerosols generated by the operation of the irrigation area is low.

The irrigation scheme will need to be managed via an appropriate level of treatment and exposure reduction measures and controls (e.g. irrigation area restrictions, set back distances, personal protective equipment) to minimise any aerosol exposure risk to mining employees, operators or maintenance personnel.

4 Wastewater Characteristics

Given that the mine and associated infrastructure facilities have yet to be established, wastewater quantities and quality have been estimated as follows:

4.1 Wastewater Quantity

A total of 200 staff are expected to be on site at any one time. It is unlikely that all 200 workers will generate their entire volume of wastewater (i.e. showering, washing, toileting), for a day on site, as workers will utilise off site accommodation facilities. For modelling purposes, it has been conservatively estimated that all 200 workers will be on site, and each worker will generate their entire wastewater volume - equating to one equivalent person (EP). The *Environmental Protection Regulation 2019* states that 1 EP = 200 L/day of effluent. With a total of 200 Eps, the total daily wastewater volume is conservatively estimated at **40,000** L/day.

4.2 Wastewater Quality

4.2.1 Key Contaminants

At the time of undertaking this assessment, final STP selection had not been completed. In the absence of a finalised design, conservative estimates of wastewater characteristics have been provided in Table 4-1. Expected effluent quality has been estimated based on the long-term limits established in the *Eligibility Criteria and Standard Conditions for Sewage Treatment Works (ERA 63) – Version 2.* These limit values also align with the quality which would be expected from a basic sewage treatment plant as per *Table A3.2 of the Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1).* When comparing to the *Public Health Act 2005* classes of recycled water, the treated wastewater would equate to class C (<1000 cfu/100mL).

Quality Characteristics	Release Limit	Limit Type
Total nitrogen*	60 mg/L	Maximum
Total phosphorus*	20 mg/L	Maximum
рН	5.0 - 8.5	Range
Total residual chlorine (if used for disinfection)	1 mg/L	Maximum
E. coli	<1000 cfu/100mL	Maximum

Table 4-1 Wastewater Quality Estimations: Source ERA 63 Eligibility Criteria Standard Conditions

*note that these limits would typically correspond with long term average total nitrogen concentrations of 30 mg/L and phosphorus 10 mg/L (these long-term averages were modelled).

4.2.2 Operational Recommendations

In addition to the above parameters, AS 1547:2012 recommends that a secondary treated effluent is achieved for irrigation systems as per Table 4-2. These limits are primarily for operational purposes (e.g. to avoid clogging up pipes/fittings and soil pore spaces with solids and biofilms).

Table 4-2 Wastewater Quality Estimates – Secondary Treated Effluent

Quality Characteristics	Release Limit	Limit Type
5-day Biochemical Oxygen Demand (BOD5)	20 mg/L	Maximum

4.2.3 Toxins

There is potential for other contaminants to exist in domestic wastewater. These typically result from pharmaceuticals (present in human waste), cleaning products and pesticides which can be intentionally or unintentionally released into the sewerage system. Concentrations of these toxins are hard to predict but will generally be very low in concentration aside from pulse events, for example, should cleaning products be poured down a drain.

5 Irrigation Area Investigation

5.1 Sampling Procedure

A field investigation was undertaken on the 24th January 2022 to conduct soil sampling. The results have been used to evaluate the irrigation suitability of soils at the site, provide inputs to the irrigation model and to confirm the irrigation application rates. The data collected also provides a pre-irrigation baseline record of soil parameters.

Three (3) test pits were excavated within the area proposed for irrigation (denoted by test pits A, B and C in Figure 2, **Appendix A**). An additional three (3) reserve test pits were excavated in the event a backup irrigation location needed to be investigated (denoted by test pits D, E and F in Figure 2, **Appendix A**). The soils from test pits A, B and C were sent for immediate laboratory analysis with the soil from test pits D, E and F left on hold.

Soils were logged in accordance with AS1726: 2017 *Geotechnical site investigations*. A copy of the test pit logs is provided in **Appendix B**.

5.2 Hydraulic Conductivity Estimations

Owing to unfavourable soil sampling conditions encountered on the site (a dried hardened dense clay), it was not possible to carry out the hand augering required to carry out hydraulic conductivity measurements in the field. Cardno have adopted the default hydraulic conductivity parameters for the three upper layers of a "Grey Clay" within the MEDLI 2.0 model.

5.3 Laboratory Analysis

All chemical testing of the site soils was completed by environmental laboratories ALS Environmental, a NATA certified environmental testing laboratory, and Bio-Track Pty Ltd. Testing included:

- > Soil pH, electrical conductivity and salinity;
- > Calcium, magnesium and sodium adsorption rates;
- > Total and exchangeable cation concentrations (K+, Na+, Ca+, Mg+);
- > Total soluble salts;
- > Emerson aggregate (dispersibility);
- > Total nitrogen (TN), total Kjeldahl nitrogen (TKN), nitrates, nitrites and ammonia;
- > Sodium adsorption ratio (SAR);
- > Bulk density (measured in this case as Clod Density);
- > Total phosphorus (TP) and orthophosphate;
- > Saturated water content;
- > Porosity;
- > Field capacity; and
- > Wilting point.

6 Irrigation Area Investigation Results

The soil profile in the primary (test pits A, B and C) and reserve irrigation area (test pits D, E and F) was similar in nature. The following sections describe the results specific to the primary irrigation area.

6.1 Irrigation Area Description

The investigation area was observed to be covered with very dry grasses, shrubs and juvenile trees scattered across the site. Site photographs are shown below, with additional photographs presented in **Appendix C**.

Figure 6-1 Vegetation at proposed effluent disposal area

Figure 6-2 Soil structure at proposed effluent disposal area

Site soils typically comprised dense dry brown sandy clays with medium to high plasticity to 0.3 mbgl overlying brown mottled grey very stiff medium to high plasticity sandy clays to the base of boreholes (1.2 mbgl). The clay soils were dried and condensed into "clods" which can be seen in Figure 6-2. Moisture or groundwater were not encountered. The test pit logs are attached in **Appendix B**.

As described in Section 5.2, field-based measurement of hydraulic conductivity was not possible. This was owing to the compacted dried clay nature of the soil which prevented penetration of a hand auger. In place of field-based measurements Cardno has adopted the default hydraulic conductivity measurements for a "Grey Clay" in MEDLI 2.0 (Table 6-1). The hydraulic conductivity values are reflective of a category 6 soil as described by AS1547:2012.

Table 6-1	Default Grey Clay Hydraulic Conductivities from MEDLI 2.0
-----------	---

Analyte	Unit	Surface (upper 100mm)	Upper subsoil (100-600mm)	Lower subsoil (600-1200mm)
Saturated Hydraulic Conductivity	mm/hour	10	1	0.5

6.2 Chemical and Physical Analysis

6.2.1 Soil Moisture and Nutrient Results

The soil moisture results are an indicator of the soil's ability to hold water and are used in the MEDLI 2.0 validation model. The figures represent the soil's plant-available water. The greater the difference between the field capacity and wilting point, the more plant-available water the soil can provide.

Nutrients such as nitrate and extractable phosphorus are also used in the MEDLI 2.0 model. The levels serve as a baseline platform upon which the model predicts how nitrate and phosphorus will be transported or accumulate in the soil profile.

The values utilised in the MEDLI 2.0 model for soil moisture, (field capacity, wilting point, porosity and bulk density) are presented in Table 6-2. The values utilised in the MEDLI 2.0 model for soil nutrients (phosphorus and nitrogen) are presented in Table 6-3.

Given that the soil profile consisted of a heavy clay which forms into "clods" it is challenging to undertake representative water holding tests. This is because the bulk density and porosity are most accurately measured from the clod, while the field capacity needs to be estimated from a larger "disturbed" soil sample. Given the two types of measurement, the field capacities generated in the lab results did not correlate with porosity. Based on advice from the laboratory the following field capacities were adopted instead:

- > Surface soil field capacity assumed to be 3% lower than porosity.
- > Sub soil field capacity assumed to be 1% lower than porosity.

Analyte	Unit	Surface Average (upper 100mm)	Upper subsoil Average (100- 600mm)	Lower subsoil Average (600- 1200mm)
Wilting Point (Lower Storage Limit)	%v/v	26.7	24.82	26.63
Field Capacity (Wilting Point)	%v/v	40.0	33.34	31.45
Available Water Capacity	mm	13.3	42.6	28.92
Saturated Water Content	%v/v	41.0	34.3	32.3
Bulk Density	%v/v	1.51	1.74	1.79
Porosity	%v/v	43.02	34.34	32.45

Table 6-2 Physical Water Holding Capacity Parameters entered into MEDLI

Table 6-3 Soil Nutrient Concentrations

Analyte	Unit	Surface Average (upper 100mm)	Upper subsoil Average (100- 600mm)	Lower subsoil Average (600- 1200mm)	
Extractable Phosphorus	mg/kg	1.67	<5	<5	
Nitrate	mg/kg	3	1.57	0.6	

6.2.2 pH, Salinity and Sodicity

Table 6-4 Chemical Analysis Results								
Analyte	Unit	Surface Average	Upper subsoil Average	Lower subsoil Average	Range			
рН	pH unit	7.17	7.57	5.83	5.2-8.2			
Sodium Adsorption Ratio	-	10.28	39.60	49.23	7.15-57.4			
Exchangeable Sodium Percent	%	8.63	18.70	22.13	7.6-25.1			
Electrical Conductivity	µS/cm	137	742	987	35-1290			

The soil pH, salinity and sodicity readings are presented in Table 6-4.

Soil pH was close to neutral, with minor acidity in the subsurface samples and minor alkalinity in the surface samples. This tended to correlate with negligible levels of salt in the upper profile and slightly higher salt levels in the lower profile.

Overall, the level of salt within the soil was low. The former Department of Environment and Resource Management (DERM)'s Salinity Management Handbook provides a range of tolerance limits for soil salinity which has been adapted from Shaw et al. 1987. These limits have been reproduced in Table 6-5. At the maximum 1.290 dS/m recorded, the salt content of the soil would be well tolerated in all but the most sensitive crops.

Plant salt- tolerance	Corresponding ECse range ²	Equivalent E	Soil salinity rating				
grouping ¹	(dS/m)	10-20% clay	20-40% clay	40-60% clay	60-80% clay		
Sensitive crops	< 0.95	< 0.07	< 0.09	< 0.12	< 0.15	Very low	
Moderately sensitive crops	0.95 – 1.9	0.07 – 0.15	0.09 – 0.19	0.12 – 0.24	0.15 – 0.3	Low	
Moderately tolerant crops	1.9 – 4.5	0.15 – 0.34	0.19 – 0.45	0.24 – 0.56	0.3 – 0.7	Medium	
Tolerant crops	4.5 – 7.7	0.34 – 0.63	0.45 – 0.76	0.56 – 0.96	0.7 – 1.18	High	
Very tolerant crops	7.7 – 12.2	0.63 – 0.93	0.76 – 1.21	0.96 – 1.53	1.18 – 1.87	Very high	
Generally too saline for crops	> 12.2	> 0.93	> 1.21	> 1.53	> 1.87	Extreme	

Table 6-5 Soil salinity EC_{se}, and EC_{1:5} for four ranges of soil clay content (adapted from Shaw et al. 1987).

Notes:

1. These groupings are statistically derived divisions based on families of linear curves representing the salt-tolerance ratings of the majority of crops reported by Maas and Hoffman (1977). The terminology of Maas and Hoffman has been modified and an additional group of sensitive crops incorporated.

2. EC_{se} given here is the boundary EC_{se} at which 10% yield reduction occurs for these plant salt tolerance groups. The EC_{1.5} ranges have been determined from these ECse ranges using the equations provided in Converting from EC1:5 to ECse (see page 30 of the Queensland Salinity Management Handbook).

Exchangeable Sodium Percentage (ESP) and the Sodium Absorption Ratio (SAR) measure the ratio of sodium in the soil with respect to other salts. A sodium ratio which is too high results in a sodic soil that

readily dissolves and disperses in water (known as dispersive soils). Dispersive soils need to be managed carefully as they can be susceptible to erosion.

Table 6-4 was sourced from DERM's Salinity Management Handbook and shows sodicity classifications for soil. The samples tested showed ESP values ranging between 7.6% and 25.1% and are therefore considered to be sodic to strongly sodic soils. The sodicity of a soil also needs to be considered with respect to the salt content to determine how prone the soil could be to dispersion. This is discussed further in Section 6.2.3.

 Table 6-6
 Criteria for classifying sodicity in soils (from Northcote and Skene 1972).

Criteria	Description
ESP < 6	Non-sodic
ESP 6 – 14	Sodic
ESP > 15	Strongly sodic

6.2.3 Sodium Adsorption Ratio

The influence of sodicity on soil behaviour varies with clay content and clay mineralogy. Where clay content is higher, lower ESP levels significantly affect soil structure.

The three red crosses on the following graph indicate the stability for the three samples which had SAR values within the chartable range. The remaining soil samples had SARs >30. In summary all soil samples had a high SAR meaning they are prone to dispersion.

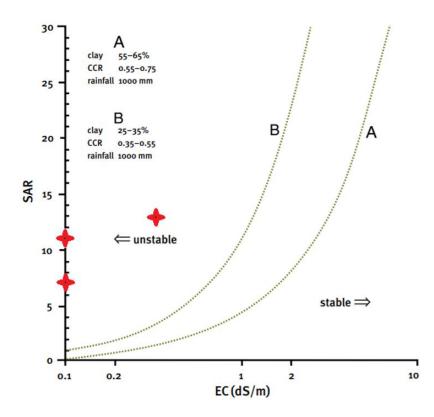


Figure 6-3 Reproduction of Figure 40 from the Salinity Management Handbook: The threshold lines for two soils of different clay content and mineralogy for an annual rainfall of 1000mm/yr.

The laboratory results are summarised in Table 6-5. Copies of the laboratory Chain of Custody, Sample Receipt Notification, Certificate of Analysis and quality control reports are provided in **Appendix D**.

7 Desktop AS1547 Assessment

7.1 Selection Criteria

To determine the suitability of a site/system for spray irrigation, a comparison against Appendix K of AS 1547:2012 has been presented in Table 7-1. Overall, results indicate that the nature of the soil and of the site is generally supportive of spray irrigation, although the dense clay soil profile does limit permeability.

Table 7-1 Selection Criteria for Irrigation Systems (Appendix K or AS/NZS 1547:2012)

	Slope Gradient	Soil Depth	Soil Category Number	Depth to seasonal water table	Duration of continuous seasonal soil saturation	Dispersive (sodic) soil	High content of stones, cobbles, or boulders	Climatic factors	
Recommendation	Steep slopes can cause greater run- off during wet weather (< 10%).	A minimum of 0.6 m desirable.	Categories 1 and 2 may lead to nutrients reaching groundwater. Categories 4-6 may require large irrigation fields.	>1.2 m depth.	Prolonged saturation of upper soil impedes treatment and hinders adsorption.	Soil may lose permeability during life of system.	Unless extremely stony or covered in boulders, not relevant as delivery pipes need not be dug in soil in straight line.	Best in climates where intense rainfall events are uncommon and evapotranspiration exceeds rainfall in most months.	
Conditions apparent on site	Gentle sloping site <10%.	Soil profile >1.2 m deep.	Soil profile category 6 (clay based). The medium/heavy clay does limit permeability.	Groundwater approx. 9-25 m below ground.	Saturation generally not an issue given the dry climate however medium/heavy clay soil profile will be prone to waterlogging following occasional heavy rainfall events.	Sodic soils present and therefore needs to be managed.	Gravel and stone not observed during investigation.	Climate suitable. Net evapotranspiration far exceeds rainfall for the whole of the year.	

7.2 Design Criteria

The following sections provide design criteria for standard surface spray irrigation systems in accordance with Appendix L and Appendix M of AS 1547:2012.

7.2.1 Irrigation Trigger

Irrigation schemes can be scheduled using either a soil moisture deficit standard or a set daily irrigation rate.

A soil moisture trigger allows for large volumes to be irrigated in dry conditions (i.e. much of the winter dry season), but minimal or no irrigation can occur during wet conditions (i.e. frequent periods in the summer wet season). The use of a soil moisture trigger requires large wet weather storage volumes, but can lessen the irrigation area required.

A set daily irrigation rate will occur despite weather conditions. Given that irrigation will occur every day, minimal wet weather storage is required (it is generally reserved only for days when the irrigation field is waterlogged due to torrential rain). The disadvantage of a set daily irrigation rate is that the rate needs to be kept quite low, so as to not overload the soil profile in the wetter periods. This typically results in the need for a larger irrigation area than would be required for a soil moisture trigger scheme.

The site has a moisture deficit throughout the year (average evaporation exceeds average rainfall), therefore there is unlikely to be a significant difference in irrigation area required for a moisture deficit or a set irrigation scheme. Given that a set irrigation rate scheme requires minimal wet weather storage requirements and is simpler to operate, a set irrigation scheme was considered to be warranted for this site.

7.2.2 Design Irrigation Rate

AS 1547:2012 recommends a design irrigation rate (DIR) of no higher than 2mm/day in a medium to heavy clay (category 6 soil) for a secondary treated effluent. The 2 mm/day irrigation rate was set as a daily maximum within the MEDLI 2.0 model. The MEDLI 2.0 model was then used to predict the soil/plant response. Given that the clay was highly dense in nature it was encountering waterlogging issues even at 2mm/day. The model responded more positively to the application of effluent over 3.6 ha (equating to approximately 1.1mm/day)

8 MEDLI 2.0 Modelling – Mine Operational Period

The simulation was carried out using climate data for the period from 1970 to 2017. Given the wastewater will be sourced from a small new and confined network, the model assumed no wet weather infiltration into the network occurs.

The key model inputs used were as per Table 8-1. The model output file is provided in Appendix E.

Table 8-1 Mine Operational Period Extreme Impermeable MEDLI 2.0 Input Parameters

Parameter	Proposed System
Effluent quantity	40 m³/day
Wet Weather Storage Tank Volume/Capacity	120 m³ (3 days)
Tank System Sludge Accumulation	0.0 kg dwt/year
Average Rainfall	590.2 mm/yr
Soil Evaporation	2038.2 mm/yr
Effluent Irrigation Area	3.6 ha
Irrigation Application	Daily maximum of 2 mm depth (in practice only 1.1mm/day would be likely to occur over 3.6 ha).
Total Nitrogen entering the tank system	30 mg/L
Total Phosphorous entering the tank system	10 mg/L
Salinity	1,600 µs/cm
Pasture Type	Rhodes Grass
Soil Type	Default MEDLI 2.0 Grey Clay base Soil Hydrologic, Soil Phosphorus, Soil Nitrogen parameters amended to reflect site-based data.

8.1.2 Hydraulic Balance Results

The modelling outputs indicated that using the above irrigation scheme parameters, 100% of the treated effluent can be irrigated with no overflow events occurring.

8.1.3 Nutrient Balance Results

Nitrogen (N)

The nitrogen balance indicated that the average load of nitrogen added to the soil was 121.75 kg/ha/year. The average load of nitrogen removed by plant uptake was 194.52 kg/ha/year. This indicates there was a net average removal of nitrogen from the irrigation area. As is naturally expected, there are still a limited number of occasions when more nitrogen is added than removed (i.e. heavy rain periods), and during those occasions some nitrate is leached into the groundwater table. On average 5 kg/ha/year of nitrate is predicted to leach via deep drainage. This is equal to the accepted limit of 5 kg/ha/year.

Phosphorus (P)

The phosphorus balance indicated that the average load of phosphorus added to the soil was 40.58 kg/ha/year. The average load of phosphorus removed by plant uptake was 33.33 kg/ha/year. This indicates a slight net average addition of phosphorus to the irrigation area. This is typically expected as most plants have a demand for nitrogen which far exceeds the demand for phosphorus.

Given that a small net addition of phosphorus occurs in most land based effluent disposal systems, the soil phosphorus adsorption capacity is relied on. It is generally considered acceptable if the phosphorus adsorption capacity life reaches 30 years or more. The model confirmed that the above scenario can achieve 66.92 years life capacity.

Salinity

Modelling assuming a Rhodes Grass pasture (considered to be moderately salt-tolerant) indicated the resulting soil salinity would be too low to impact upon the health of the grass. Grass health is important to maintain to ensure that nitrogen and phosphorus uptake is maximised.

8.1.4 Waterlogging

Given the soil consisted of a dense clay it was prone to waterlogging and thus waterlogging was the limiting factor in the model. A waterlogged soil inhibits grass health/growth which then inhibits the grasses' ability to assimilate nitrate from the treated effluent which results in the nitrate leaching through the waterlogged soil profile.

To assist in visualising the impact of waterlogging throughout the year refer to Figure 8-2 (0 = no waterlogging, 1 = full waterlogging). In an ideal model, waterlogging can be easily maintained at 0 throughout the year, however in this case it is present throughout the year and only decreases slightly during spring. The decrease of waterlogging in spring likely coincides with when both the net evaporation is highest (before the wet season commences) and there is a surge in plant growth given the longer days and higher temperatures at this time of year.

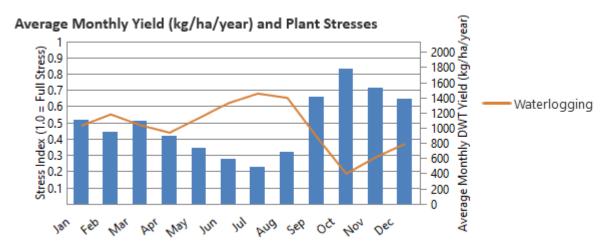


Figure 8-1 Grass Dry Weight Yield and Waterlogging Stress (extracted from MEDLI 2.0 output file)

8.1.5 Surface Runoff Water Quality

Given that the soil is prone to waterlogging, it is susceptible to effluent runoff. By restricting the effluent irrigation to an approximate of 1.1 mm/day over 3.6 ha the model did not detect runoff. It's important to note that during practice the irrigation area may be prone to pooling of water following rainfall events, and irrigation may need to be withheld on such days.

8.1.6 Pasture Health

Overall, the pasture maintains adequate health over the modelled period. No die off events were predicted and a satisfactory yield matter and coverage was maintained, however as described above in Section 8.1.4 plant health can be improved by reducing waterlogging.

8.1.7 Model Summary

The MEDLI 2.0 model supports the irrigation of effluent at the proposed location over an area of 3.6 ha at an irrigation rate that equates to approximately 1.1mm/day.

For further detail, the MEDLI 2.0 output report is provided in Appendix E.

9 Aerosols, Pathogens, Odours and Toxins

9.1 Aerosols and Pathogens

A spray irrigation system will likely be the most simple and practical method of irrigation for this site. Spray irrigation systems disperse effluent through the air, which can result in fine mist, otherwise termed as aerosols. The aerosols can contain pathogens which can be carried for some distance on the wind.

The National Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1) 2006 provide examples of how log reductions using treatment and exposure control can be achieved, where a log reduction corresponds to a 10-fold, or 90% reduction of a given pathogen. Three examples which are relative to municipal irrigation are provided below in Table 9-1. The options are presented in order of highest level of treatment to lowest level of treatment. The lower the level of treatment, the higher the level of exposure reductions measures are required.

Given that the site and available buffer area are not significantly constrained and are relatively isolated, it will be feasible to readily implement exposure reduction measures such as buffers, restriction of public access or spray drift control, if this is deemed to be necessary.

9.2 Odour

Both the sewage treatment plant and the irrigation field can be odour sources. Odour is spread in a similar manner to that of aerosols and can also be dealt with in a similar manner.

Odour can be reduced through increased treatment, set back distances and aerosol reduction measures (e.g. using aerosol limiting spray methods). Consideration to irrigation timing can reduce odour drift, for example avoiding irrigation when prevalent wind direction is towards nearby sensitive receivers.

9.3 Toxins

Aside from nutrients and pathogens, wastewater can contain other toxins as described in Section 4.2. These tend to only pose a direct risk to humans if the treated wastewater is intended for re-use to supplement a drinking water supply. In such cases the wastewater must be treated to an extremely high level to address these risks.

There is also some risk of exposure to toxins from dermal contact or inhalation, however, repeated continuous exposure would be required to result in any noticeable health effects. Health risks associated with aerosol exposure to toxins can be minimised by reducing the production of aerosols during irrigation, implementing access restrictions to the irrigation area, and ensuring buffer zones are implemented as per Section 11.2.

Log reduction targets (Virus, Protozoa, Bacteria) ª	Indicative treatment process	Log reductions achievable by treatment (V, P, B)	On-site preventative measures	Exposure reduction ^b	Water quality objectives $^{\circ}$
Municipal use – open use, sp	orts grounds, golf courses, dus	t suppression, etc <i>or</i> u	nrestricted access and application		
5.0 3.5 4.0	Advanced treatment required; for example: Secondary, coagulation, filtration and disinfection Secondary, membrane filtration, UV light	5.0 3.5 4.0	No specific measures		To be determined on case-by- case basis depending on technologies Could include turbidity criteria for filtration, disinfectant Ct or dose (UV) <i>E. coli</i> < 1 per 100ml
Municipal use, with restricted	access and application			1	-
5.0 3.5 4.0	Secondary treatment with disinfection	2.0 - 3.0 1.0 >6.0	Restrict public access during irrigation and one of the following: No access after irrigation, until dry (1-4 hours) Minimum 25-30m buffer to nearest point of public access Spray drift control; for example, through low-throw sprinklers (180° inward throw), vegetation screening, or anemometer switching	2.0 1.0 1.0	 BOD < 20mg/L^d SS < 30mg/L^d Disinfectant residual (e.g. minimum chlorine residual) or UV dose^e <i>E. coli</i> < 100cfu/100mL
Municipal use, with enhanced	restrictions on access and app	blication			
5.0 3.5 4.0	 Secondary treatment with > 25 days lagoon detention or primary treatment with > 50 days lagoon detention Secondary treatment 	1.0 - 3.0 1.0 - 3.0 3.0 - 4.0 0.5 - 2.0 0.5 - 1.0 1.0 - 3.0	 Restrict public access during irrigation and combinations of: No access after irrigation, until dry (1-4 hours) Minimum 25-30m buffer to nearest point of public access Spray drift control, e.g. through low throw sprinklers (180° inward throw), vegetation screening or anemometer switching 	2.0 1.0 1.0	 BOD < 20mg/L^d SS < 30mg/L^d <i>E. coli</i> < 1000 cfu/100mL (disinfection may be required to achieve this concentration)

Table 9-1	Examples of how pathogen log reduction targets can be achieved for Municipal Irrigation systems (Source – National Guidelines for Water Recy	cling)
-----------	--	--------

B = enteric bacteria; BOD = biochemical oxygen demand; cfu = colony forming unit; Ct = disinfectant concentration x time; P = enteric protozoa; SS = suspended solid; V = enteric virus; UV = ultraviolet. a Log reduction targets are minimum reductions required from raw sewage based on 95th percentiles from Table 3.7 of the guidelines.

b Exposure reductions are those achievable by on-site measures as listed in Table 3.3 of the guidelines.

c Water quality objectives represent medians for numbers of *E. coli* and means for other parameters.

d BOD and SS are an indication of secondary treatment effectiveness.

e Aim is to demonstrate reliability of disinfection and ability to consistently achieve microbial quality.

f Log reductions for public in the vicinity of commercial food crop irrigation areas should comply with total log reductions required for municipal use.

10 Wastewater Treatment Options

10.1 Standard of Wastewater Treatment

The MEDLI 2.0 model confirms that a standard secondary treated effluent as per Table 4-1 and Table 4-2 can be irrigated within the investigation area without overloading the modelled Rhodes Grass or soil with nutrients.

In terms of pathogen treatment capability, the classes of recycled water quality as per the *Queensland Public Health Regulation 2018* are as per Table 10-1. By utilising, for example, enhanced access restrictions (as per the last row of Table 9-1) a Class C recycled water quality would be acceptable standard of wastewater treatment.

If irrigation area restrictions need to be eased slightly (as per the middle row of Table 9-1) a Class B water quality may be required. If no restrictions are in place (as per the top row of Table 10-1), and staff/public can readily access the irrigation area then a Class A + quality may be required.

<i>E.coli</i> count	Class of Recycled Water
<1 cfu/100mL*	Class A+
<10 cfu/100mL	Class A
<100 cfu/100mL	Class B
<1000 cfu/100mL	Class C
<10,000 cfu/100mL	Class D

Table 10-1 Classes of Recycled Water

*to achieve A+ compliance other pathogens such as Clostridium perfringens, F-specific RNA coliphages, and somatic coliphages must also be tested for.

10.2 Package Treatment Plant Options

Many remote mining camps rely on package STPs which can be delivered in shipping containers and assembled on site. These are scaled down STPs having a small footprint and are generally highly efficient and of low maintenance requirements. Most package STPs come with standard Class C treatment capability and many come with upgrade options allowing them to readily achieve Class A treatment capability.

During detailed design the most applicable treatment plant type can be decided upon. At this stage, it is recommended that a low maintenance system with secondary treatment capability and ability to produce at least Class C effluent should be adopted pending irrigation area restrictions detailed in Table 9-1. If irrigation area restriction requirements for Class C effluent are not feasible, a low maintenance system with secondary treatment capacity should be selected with effluent quality capability of Class B or Class A in accordance with the management measures outlined in Table 9-1.

In addition to producing treated effluent, sewage treatment plants produce waste in the form of sludge. Waste sludge can be either be disposed of offsite, or where possible, recycled/reused.

11 Irrigation Area Management

11.1 Spray Irrigation Specifications

The irrigation system will adopt recommendations from AS/NZS 1547:2012 as determined to be appropriate. Key considerations are outlined in the following sections.

11.1.1 Designated Disposal Area

The designated irrigation area:

- Is not be used for purposes that compromise the effectiveness of the system or access for future maintenance purposes;
- > Is to be used only for effluent application;
- > Will have boundaries clearly delineated and not accessible to livestock to minimise damage;
- > Will be constructed to capture run-off and seepage of effluent beyond the designated area; and
- > Will have appropriate buffer areas maintained.

11.1.2 Irrigation System

The spray-irrigation system will be designed to:

- > Distribute effluent evenly in the designated area;
- Control the droplet size, throw and plume height so that the risk of aerosol dispersion and the likelihood of wind draft distributing any effluent beyond the designated area is negligible;
- Have warnings complying with AS 1319 or AS/NZS 1319, at the boundaries of the designated area, clearly visible to property users, with wording such as "Recycled Water Avoid Contact DO NOT DRINK"; and
- > Have a buffer area to ensure that any potential spray drift is adsorbed within appropriate setback distances.

11.2 Buffer Distances

The QLD Government Technical Guideline for Disposal of Effluent via Irrigation provide the following distances for reducing the risk associated with land disposal schemes using effluent irrigation:

- > Natural waterways: >100 m
- > Residential facility or public amenities: >50 m
- > Domestic water bore: > 250 m
- > Drinking water catchment and aquatic ecosystems with high ecological value: > 250 m
- > Town water supply bore: > 1000m
- > Groundwater bore used for potable water supply: >250 m; and
- > Groundwater table at a depth: >3 m.

It is recognised that the public buffer of 50 m is greater than that suggested in Table 9-1. As a conservative measure, it is recommended to implement a 50 m buffer.

11.3 Maintaining Pasture

The MEDLI 2.0 model assumes that when the grass is mowed, that the grass clippings are removed from the area so that the nutrients within the grass clippings are removed with them. There are a couple of ways to achieve this, by either using a mower with a catcher, or by removing the grass clippings after mowing has been completed (e.g. mower grass catcher, leaf blower or raking).

The MEDLI 2.0 model indicates that mowing would only be required approximately 2 times per year to maintain sufficient growth and subsequent nutrient uptake. The grass can be mowed more frequently to maintain aesthetics if required.

11.4 Monitoring Program

Once detailed design progresses a risk assessment of the irrigation scheme will be undertaken to determine site-specific monitoring requirements. The monitoring program will be designed in accordance with the DES technical guideline *Disposal of Effluent using Irrigation* and can be adopted into the Irrigation Management Plan. The monitoring program may include periodic monitoring of soil, groundwater and any available surface water in close proximity to the irrigation area. Often such monitoring programs include 6 monthly or annual monitoring for nutrients, salts, sodicity and contaminants such as metals/metalloids and pesticides.

11.5 Managing Soil Permeability

The limited permeability of the soil may present waterlogging issues during operation, most likely following heavy rainfall. To improve permeability there are a couple of available options such as:

- a. Deep ripping of the soil profile (to at least 500mm depth) to mechanically break up the compacted clay soil. During such an exercise it is recommended that gypsum be applied to the freshly exposed surface which will assist in breaking the clay and balancing the soil sodicity (discussed further in Section 11.6). By utilising this option, it may be possible to increase the irrigation rate closer to 2mm/day and therefore reduce the required irrigation area. OR
- b. Import fill with greater levels of permeability (possibly from nearby mined locations) for irrigation purposes. If a deep enough layer of permeable fill (ideally 1000mm depth) could be sourced, it may be possible to increase the irrigation rate closer to 3 or 4 mm/day and therefore reduce the required irrigation area.

11.6 Managing Soil Sodicity

As discussed in Section 6.2 the soil is sodic. Sodic soils tend to disperse readily when in contact with water. Dispersion can become an issue because as the fine soil particles "dissolve" they tend to become deposited within the soil pore spaces, thereby causing the soil to become clogged and less permeable.

The MEDLI model does not have the ability to account for changes to the soil profile resulting from dispersion therefore additional measures need to be taken to prevent it from occurring. The Department of Environment and Resource Management - *Salinity Management Handbook Second Edition 2011* provides a range of management measures which can be used to manage salinity and sodicity in soils.

It is possible to balance the soil Sodium Adsorption Ratio (SAR) by addition of calcium (typically gypsum) into the soil profile. Application of gypsum works on the principle that the calcium added to the soil will counterbalance the sodium. The addition of gypsum can result in better surface soil aggregation and consequently reduced waterlogging and crusting, and can improve drainage.

Gypsum could be added to the upper soil profile with the aim of leaching the calcium into the underlying clay profile. Gypsum has a relatively low solubility, and it is estimated that on average only 1 tonne/ha/year of pure gypsum can be dissolved (Ayers & Westcot 1976). Due to the impurities in gypsum, unevenness of distribution and loss from surface runoff, the general recommendation is the application of 2-6 t/ha.

12 Conclusions

The model results presented are based on conservatively estimated wastewater volumes and treated water quality. These conclusions are therefore conservative and can likely be refined further during detailed design.

12.1 Disposal Area Size and Storage Requirements

During operation a conservative volume of **40m**³ per day of secondary treated effluent with a quality as per Table 4-1 and Table 4-2 is expected to be generated. This effluent can be irrigated over **3.6 ha** at no more than **1.1 mm/day** without nutrient leaching, runoff or overflow issues arising. The Queensland Government Technical Guideline for Disposal of Effluent via Irrigation recommends **120m**³ of wet weather storage (3 days) should be provided.

12.2 Location of Disposal Area

The irrigation disposal area can be located anywhere within the investigation area, using whichever shape is most practical. The investigation area is sufficiently large to accommodate the modelled irrigation area size. Any proposed structures within the MIA will need to take into consideration the operation of the irrigation system.

12.3 Managing Pathogen Exposure Risk

It will likely be reasonable and practical to restrict public/staff access to the irrigation area, and restrict the irrigation application method to that shown in the last row in Table 9-1. As a result, the risk of pathogen exposure to the public/staff is low enough justify a secondary treated Class C recycled water quality requirement.

12.4 Managing Soil Permeability

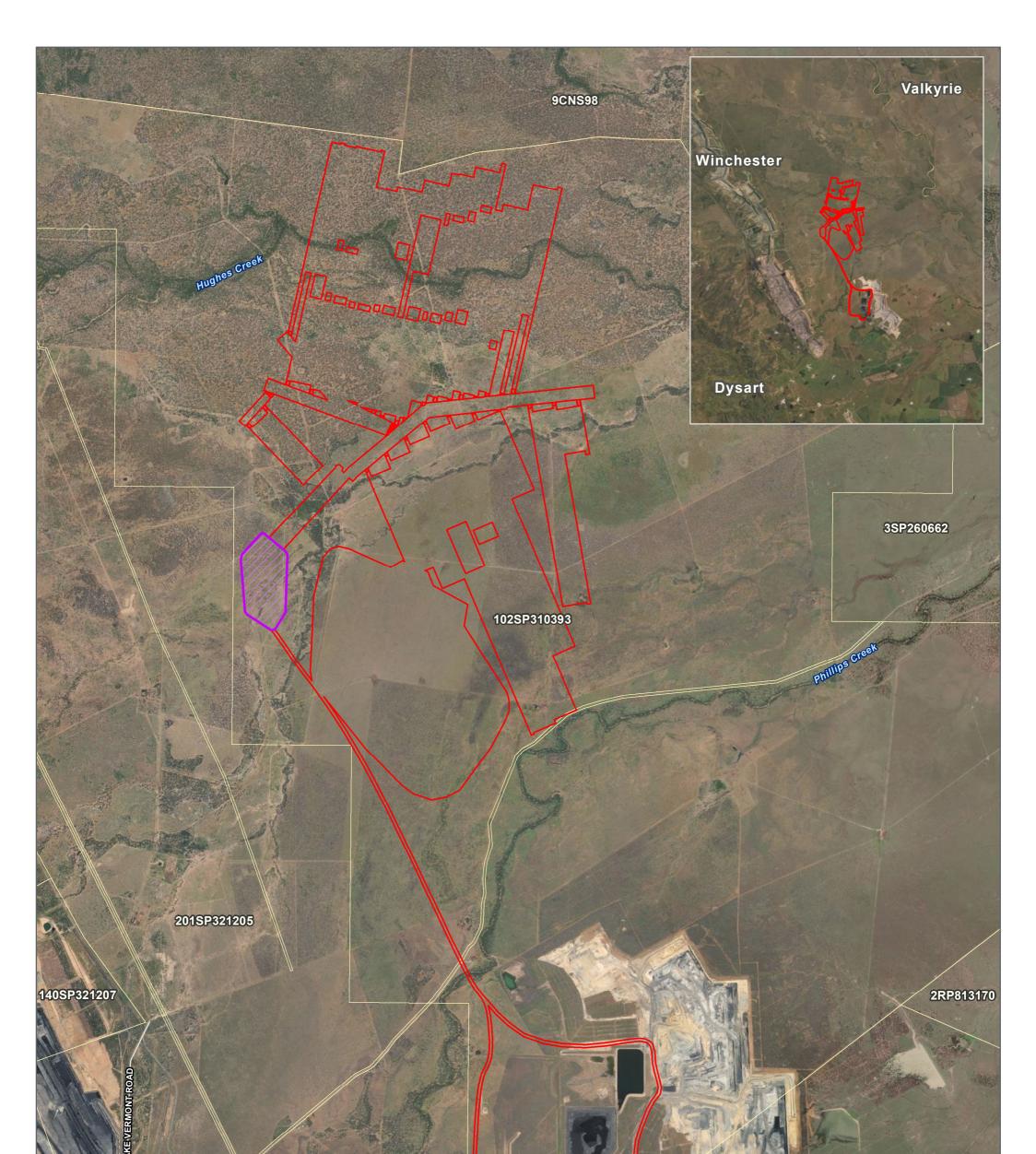
The limited permeability of the soil may present waterlogging issues during operation, most likely following heavy rain. Potential options to improve soil permeability are presented in Section 11.5.

12.5 Managing Soil Sodicity

The soil in the proposed effluent disposal area is sodic and therefore prone to dispersion. Dispersion can lead to further reduction in soil permeability. Management advice to reduce sodicity/dispersion is presented in Section 11.6.

12.6 Standard of Assessment and Limitations

This Land-Based Effluent Disposal Assessment Report has been undertaken in accordance with the current industry standard for wastewater management as set out in AS/NZS 1547:2012 *On-site Domestic Wastewater Management*.


13 References

- > AS/NZS 1547: 2012 On-site domestic wastewater management.
- > AS/NZS 1319: 1994 Safety signs for the occupational environment.
- > AS 1726: 2017 Geotechnical site investigations.
- > Ayers, R.S. and Westcot, D.W. (1976) Water quality for agriculture. Previously published as FAO Irrigation and Drainage Paper 29. Food and Agriculture Organization of the United Nations, Rome, 1985. Available: <u>http://www.fao.org/3/t0234e/t0234e00.htm</u>
- > Bureau of Meteorology (BOM) 2020, *Groundwater Dependent Ecosystem Atlas*. Bureau of Meteorology and Department of Environment and Science, Queensland Government, Brisbane.
- > The State of Queensland (Department of Environment and Resource Management) (2011) Salinity management handbook: second edition. Available: <u>https://www.publications.qld.gov.au/dataset/5f866f8dd47a-430e-aa9f-c97f7c4147d7/resource/b586d088-63e2-4ae5-9488-fbf864dcd638/fs_download/salinitymanagement-handbook-foreword.pdf</u>
- Department of Environment and Heritage Protection (2015) Eligibility criteria and standard conditions for sewage treatment works (ERA 63) – Version 2. Available: <u>https://environment.des.qld.gov.au/___data/assets/pdf_file/0035/88919/pr-es-irrigate-treated-sewage.pdf</u>
- Environmental Protection (Water and Wetland Biodiversity) Policy 2019. Available: https://www.legislation.qld.gov.au/view/html/inforce/current/sl-2019-0156#
- State of Queensland (2019) Environmental Protection Regulation 2019. Available: <u>https://www.legislation.qld.gov.au/view/pdf/inforce/2019-09-01/sl-2019-0155</u>
- Department of Environment and Science (2015) The Model for Effluent Disposal Using Land Irrigation Version 2.0 (MEDLI 2.0). <u>https://science.des.qld.gov.au/government/science-division/MEDLI 2.0</u>
- State of Queensland (2017) Model Operating Conditions: ERA 63 Sewage Treatment. Available: <u>https://environment.des.qld.gov.au/___data/assets/pdf_file/0030/88419/pr-co-sewage-treatment.pdf</u>
- The State of Queensland (2019) SILO: Australian climate data from 1889 to yesterday. Available: <u>https://www.longpaddock.qld.gov.au/silo/</u>
- > Department of Natural Resources, Mines and Energy (2020) Queensland Globe. Available: <u>https://qldglobe.information.qld.gov.au/</u>
- Maas, EV & Hoffman, GJ (1977) 'Crop salt tolerance—current assessment.' Journal of the Irrigation and Drainage Division, Proceedings of the American Society of Civil Engineers, 103: 115-130.
- Northcote, KH & Skene, JKM (1972) Australian soils with saline and sodic properties, CSIRO Soil Publication No. 27, CSIRO Melbourne, Australia.
- Shaw, RJ, Hughes, KK, Thorburn, PJ & Dowling, AJ (1987) 'Principles of landscape, soil and water salinity—processes and management options', Part A in Landscape, soil and water salinity, Proceedings of the Brisbane Regional Salinity Workshop, Brisbane, May 1987, Conference and Workshop Series QC87003, Department of Primary Industries, Queensland.
- National Resource Management Ministerial Council, Environment Protection and Heritage Council and Australian Health Ministers Conference (2006) Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1). Available: <u>www.awa.asn.au/Documents/water-recyclingguidelines-health-environmental-21.pdf</u>
- > Tennakoon. S, and Ramsay. I, 2020. Technical Guideline for disposal of effluent via irrigation. Brisbane: Queensland Department of Environment and Science.

APPENDIX

FIGURES

Legend

Project Footprint

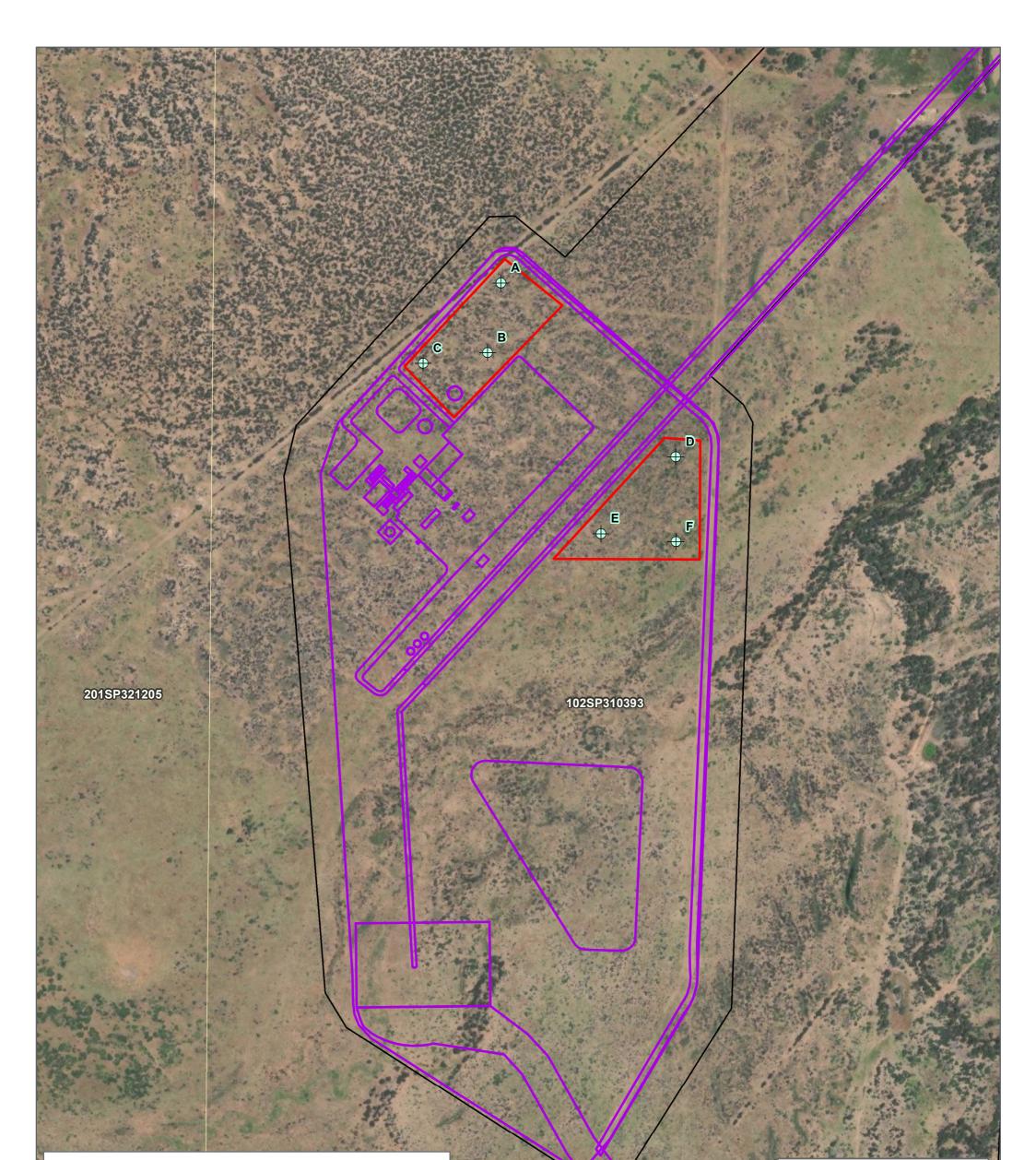
— Queensland Roads and Tracks (QSpatial, 2022)

Rail Network (QSpatial, 2022)

Mine Infrastructure Area (MIA)

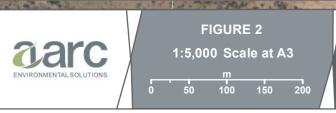
Cadastre (QSpatial, 2022)

FIGURE 1 1:50,000 Scale at A3 <u>m</u> 500 1,000 1,500 2,000 Lake Vermont Mine

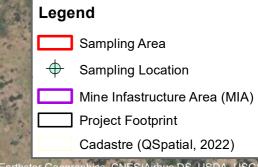

1SP190747

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, Aster 515, 124, and the GIS User Community Esri, HERE, Garmin, (e) OpenStreetMap contributors, and the GIS user community

Lake Vermont Mine -Meadowbrook Project

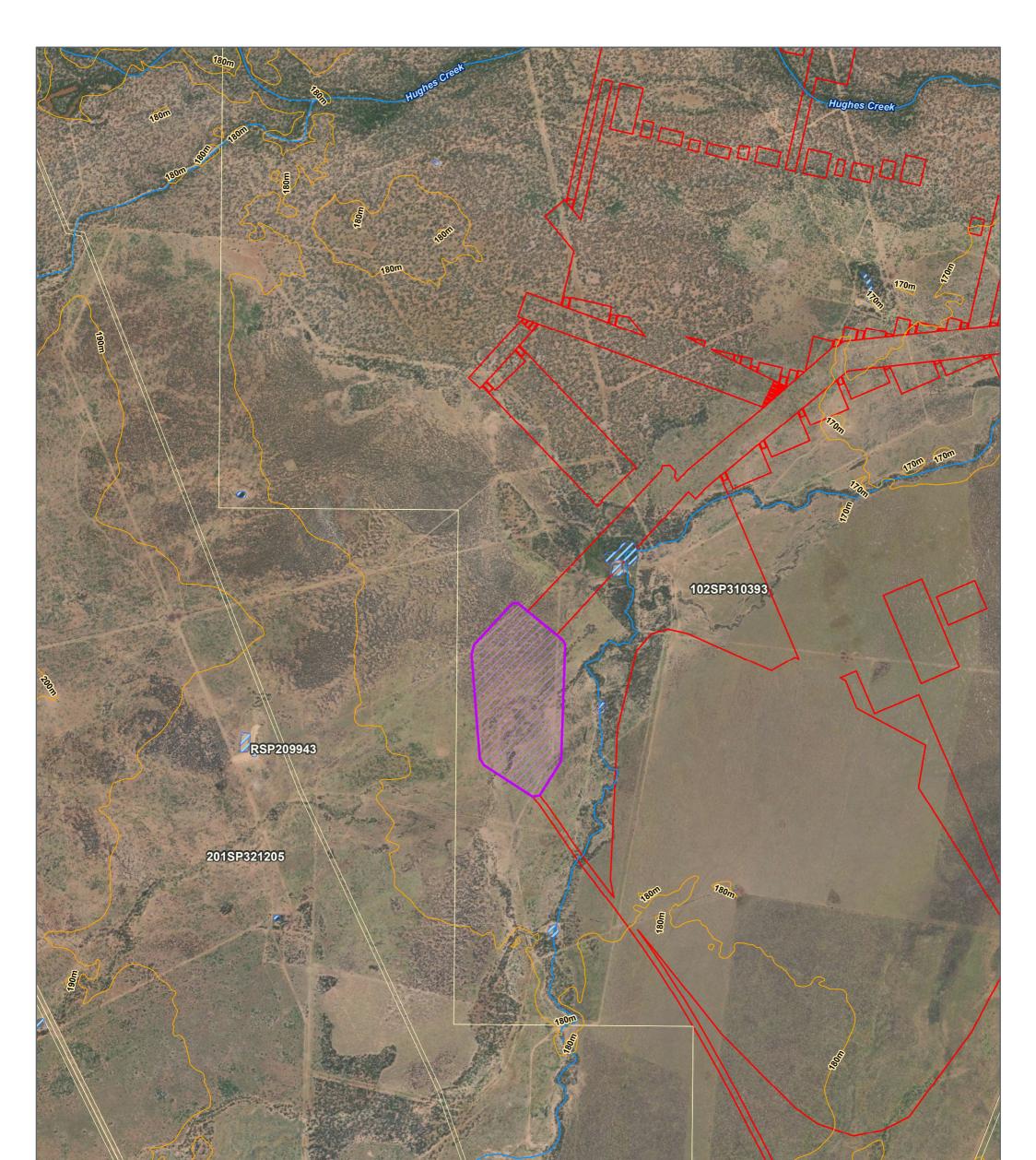

LOCATION MAP

Map Produced by Geosciences (9918) Date: 2022-03-02 | Project: M31991 Coordinate System: GDA 1994 MGA Zone 55 Map: M31991-GS-001-SiteMap.mxd 01



PROPOSED SAMPLING LOCATION

AGD 198	34 Zone 55	MGA94 Zone 55			
Easting	Northing	Easting	Northing		
639403.068	7525193.411	639516.891	7525193.411		
639383.962	7525093.343	639497.784	7525093.343		
639291.666	7525077.798	639405.488	7525077.798		
639653.727	7524943.726	639767.547	7524943.726		
639546.535	7524833.618	639660.355	7524833.618		
639654.052	7524821.960	639767.871	7524821.960		
	Easting 639403.068 639383.962 639291.666 639653.727 639546.535	639403.0687525193.411639383.9627525093.343639291.6667525077.798639653.7277524943.726639546.5357524833.618	EastingNorthingEasting639403.0687525193.411639516.891639383.9627525093.343639497.784639291.6667525077.798639405.488639653.7277524943.726639767.547639546.5357524833.618639660.355		


Lake Vermont Mine -Meadowbrook Project

Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS AeroGRID, IGN, and the GIS User Community Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

Cardno

Map Produced by Geosciences (9918) Date: 2022-03-02 | Project: M31991 Coordinate System: GDA 1994 MGA Zone 55 Map: M31991-GS-006-SamplingLocation.mxd 01

ACNS122

Legend

Project Footprint

- —— Watercourse Lines (QSpatial, 2022)
- 10m Elevation Contours (QSpatial, 2022)
- Mine Infrastructure Area (MIA)

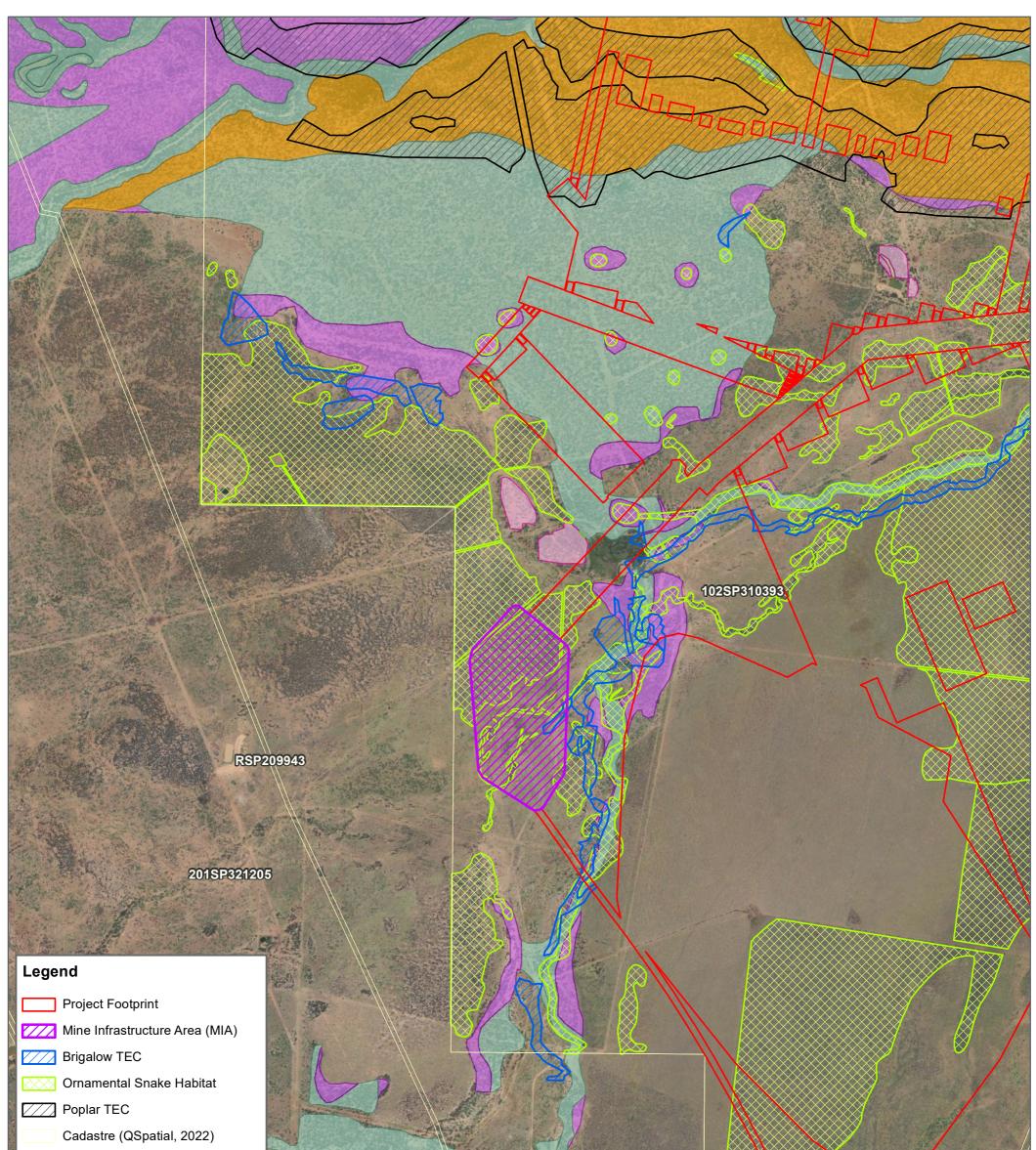
Cadastre (QSpatial, 2022)

ZZZ Reservoir (QSpatial, 2022)

DATE

FIGURE 3 1:25,000 Scale at A3 Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

Lake Vermont Mine -Meadowbrook Project


One Mile Creek

180m

Date: 2022-03-02 | Project: M31991 Coordinate System: GDA 1994 MGA Zone 55 Map: M31991-GS-003-Topo-Watercourse.mxd 01

HSP260662

Vegetation Management Regional Ecosystem (QSpatial, 2022)

- Category A or B area containing endangered
- Category A or B area containing of concern
- Category A or B area that is least concern
- Category C or R area containing endangered
- Category C or R area that is of least concern

BARC ENVIRONMENTAL SOLUTIONS

FIGURE 4 1:25,000 Scale at A3 m 0 200 400 600 800

HSP260662 Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

> Lake Vermont Mine -**Meadowbrook Project REGIONAL ECOSYSTEM MAP**

Cardno Map Produced by Geosciences (9918) Date: 2022-03-02 | Project: M31991 Coordinate System: GDA 1994 MGA Zone 55 Map: M31991-GS-004-RegEco.mxd 01

APPENDIX

TEST PIT LOGS

C Cardno

			a	rdi	now	🦞 🌒 Sta	ante	C						TE	ST PI	LOG	SHEET
		nt: ect:				nental Solutio			oho	lina				ŀ	lole	No:	TP01
Ĺ	.002	ation	: i	ake	Vermont -	Meadowbroc	ok Pro	ject	oue	iing	Job No: M31991						neet: 1 of 1
					.000 N752	5363.000					Angle from Horizontal:				e Elevati	on:	
					ckhoe sions: 1.6	50m LONG A	ND 0.8	30m W	IDE		Excavation Method: 60				ctor: N//	4	
-					4/1/22						Logged By: GM		(Checke	ed By: M	IF	
		Exca	vation		Samplii	ng & Testing					Material	Description					
	Method	Resistance	Stability	Water	Sa Fié	mple or eld Test	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle chara colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weathe defects and structure	onents colour,	Moisture Condition	Consistency Relative Density	&	STRUCT Other Obse	
		F			B 0.00 - 0.10	m					Sandy CLAY: medium to high plastici fine to coarse grained sand, no odou roots. rootlets present, MPS 1 LL 50 P75 65	ity, brown, r, no staining,		St	TOPSOIL		
					B 0.10 - 0.60	m	Ť		СІ		MPS TEL 50 P75 65		D				
							_										
							F		-	0.30m	Sandy CLAY: medium to high plastici			-	ALLUVIUM	1	
											mottled grey, fine to medium grained odour, no staining, MPS <1 LL 50 P75 70	sand, no					
							Ē										-
				be			- 0.5										-
				counter													
	× L		Stable	Not Encountered	B 0.60 - 1.20	m	+										
		н		2										VSt			
							-		СІ				D to M				-
							ŀ										
1001							F										
Billo							1.0										
							- 1.0										-
4, T10							ŀ										
										1.20m							
											TERMINATED AT 1.20 m Target depth						
10:01 10:01																	-
11 10212022							. 4 5										
							- 1.5										_
																	-
LANE VERMONI.GFJ																	
							ŀ										-
5																	-
	MET	THOD			I	WATER			F	IELD 1	TESTS	Soil Descrip	otors			SOIL CO	NSISTENCY
	EX R	Ex Rip	oper	r buck	et	Water Le shown	vel on D	ate		PT	Standard Penetration Test (Split Spoon)	MPS-Max LL - Liqu	ximum Pa uid Limit (%)		VS -	Very Soft Soft Firm
	HA AD/ WB	T So	nd aug lid fligh ashbor	ler it auge e drillin	r: TC-Bit	Water In:			s	CSPT		P75 - Pas	sing 75 µ	m sieve ((%)	F - St - VSt - H -	Firm Stiff Verv Stiff
Log CAL	RR		ck rolle		9	SAMPLES				PP	Hand/Pocket Penetrometer Photoionisation Detector	MOISTURE					
	VE E	Ve Ea	ry Eas sy	y (No F	Resistance)	B Bulk disturb S Disturbed s		ole		/S	Vane Shear; P=Peak R=Residual (uncorrected kPa)	M - Moi W - Wei	ist t			VL - 7	E DENSITY Very Loose Loose
0.71	F H VH	Fin Ha	m rd	d (Refu	isal)	ES Environme U50 Thin wall 50	ntal sam	ple imeter				PL - Plas LL - Liqu	stic limit uid limit	tont		MD - D -	Medium Dense Dense
						tube						w - Moi	isture con	lent			Very Dense
Į	Refe abbr	r to exp eviation	lanatory s and ba	notes f asis of d	or details of escriptions				С	Card	dno (Qld) Pty Ltd						,

	5		a	rdi	10 now	Sta	inte	C						TE	ST PIT	LOG	SHEET
Client: AARC Environmental Solutions Project: Land Based Effluent Disposal - MEDLI Mo Location: Lake Vermont - Meadowbrook Project									oho	lina				ŀ	lole	No:	TP02
i		ation	: i	ake	Vermont - N	leadowbroo	k Pro	ject	oue	iiiig	Job No: M31991						eet: 1 of 1
					.000 N75252	270.000					Angle from Horizontal:				e Elevatio	on:	
					ckhoe sions: 1.60	m LONG AN	ID 0.8	30m W	IDE		Excavation Method: 60				ctor: N/A		
					4/1/22						Logged By: GM				ed By: M		
		Exca	vation		Sampling	g & Testing					Materia	I Description					
	Method	Resistance	Stability	Water	Sam Field	iple or 1 Test	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle char. colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weather defects and structure	onents colour,	Moisture Condition	Consistency Relative Density	& (STRUCTI Other Obse	
	•	F			B 0.00 - 0.10 m	1					Sandy CLAY: medium to high plastic fine to coarse grained sand, no odou roots. rootlets present, MPS 1 LL 50 P75 65	ity, brown, r, no staining,		St	TOPSOIL		
					B 0.10 - 0.60 m	1	Ť				MPS ILL 50 P75 65						
									CI				D				-
							F		_	0.30m	Sandy CLAY: medium to high plastic	ity brown		-	ALLUVIUM		
											mottled grey, fine to medium grained						
							F				odour, no staining, MPS <1 LL 50 P75 70						
				Not Encountered			- 0.5										-
	EX		Stable	Encou													
	Ϊ	н	Sta	Not	B 0.60 - 1.20 m	1								VSt			
							ŀ										-
									СІ				D to M				
							F										-
1 0012							F										-
NOTIO							- 1.0										_
IO, MOL							1.0										
R I A, F11010,							-										-
	V									1.20m							
.uuu naige											TERMINATED AT 1.20 m Target depth						
0.01 10.01																	
							- 1.5										-
							1.5										_
J SSURAN																	
LANE VERMONI.GFJ							[-
							F										-
N N							L										-
M3195																	
	MF	THOD			ļ,	WATER				IELD 1	TESTS	Soil Descrip	tors			SOILCOM	
	EX R	Ex	cavato oper	r buck		Vater Le	vel on D	ate		PT	Standard Penetration Test	MPS - Max	kimum Pa	rticle Size	e (mm)	VS - \	/ery Soft
	R HA AD/	Ha T So	nd aug lid fligh	t auge	r: TC-Bit	— shown ── Water Inf			s	CSPT	(Split Spoon) Standard Penetration Test	LL - Liqu P75 - Pas	sing 75 µ	m sieve ((%)	F . F	Firm Stiff
TYPE	WB RR	Wa	ashbor ck rolle	e drillin	g –	- Water Ou	itflow			P	(Solid Cone) Hand/Pocket Penetrometer	MOISTURE				St - S VSt - \ H - H	/ery Stiff Hard
в год	VE		ry Eas	y (No F	Resistance) B	AMPLES Bulk disturb	ed sam	ole	P V	'ID 'S	Photoionisation Detector Vane Shear; P=Peak	D - Dry M - Moi	st			RELATIVE	E DENSITY
10.GLB	E F	Ea Fir	sy m		S	Disturbed s S Environmer	ample ital sam	ple			R=Residual (uncorrected kPa)	W - Wei PL - Plas	t stic limit			L - L	/ery Loose _oose /ledium Dense
	H VH	Ha Ve	rd ry Haro	d (Refu		50 Thin wall 50 tube	mm dia	imeter				LL - Liqu w - Moi	uid limit sture con	tent		D - D	Dense /ery Dense
Refer to explanatory notes for details of abbreviations and basis of descriptions Cardno (QId) Pty Ltd																	

	5		a	rdi	now	Sta	inte	C						TE	ST PI1	LOG	SHEET
Client: AARC Environmental Solutions Project: Land Based Effluent Disposal - MEDLI Mo Location: Lake Vermont - Meadowbrook Project									oho	lina				ŀ	lole	No:	TP03
i		ation	: i	ake	Vermont - N	Meadowbroo	k Pro	ject	oue	iiiig	Job No: M31991						neet: 1 of 1
					.000 N7525	246.000					Angle from Horizontal:				e Elevatio	on:	
					ckhoe sions: 1.60	m Long AN	ID 0.8	30m W	IDE		Excavation Method: 60				ctor: N/A	4	
					4/1/22						Logged By: GM				ed By: M		
		Exca	vation		Samplinę	g & Testing					Materia	I Description					
	Method	Resistance	Stability	Water	San Fiel	nple or d Test	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle char. colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weather defects and structure	onents colour,	Moisture Condition	Consistency Relative Density	&	STRUCT Other Obse	
		F			B 0.00 - 0.10 n	n					Sandy CLAY: medium to high plastic fine to coarse grained sand, no odou roots. rootlets present, MPS 1 LL 50 P75 65	ity, brown, ir, no staining,		St	TOPSOIL		
					B 0.10 - 0.60 n	n	t				MPS ILL 50 P75 65						
									CI				D				-
							F		_	0.30m	Sandy CLAY: medium to high plastic	ity brown		-	ALLUVIUM		
											mottled grey, fine to medium grained						
							F				odour, no staining, MPS <1 LL 50 P75 70						-
				Not Encountered			- 0.5										-
	EX		Stable	Encou													
	Ϊ	н	Š	Not	B 0.60 - 1.20 n	n								VSt			
							F										-
									СІ				D to M				
							F										-
1 0012							F										-
NOTIO							- 1.0										_
IO, MOL							1.0										
KIA, Photo,							ŀ										-
	V									1.20m							
.uuu naige											TERMINATED AT 1.20 m Target depth						-
10:01 ZC:01																	
11/10/2/2022							-1.5										-
							1.5										_
J SSURA																	-
LAKE VERMONI.GPJ																	-
							ľ										-
N N							L										-
M3195																	
	MF	THOD			<u> </u>	WATER				IELD 1	TESTS	Soil Descrip	tors			SOIL CO	
	EX R	Ex	cavato oper	r buck		Water Le	vel on D	ate		PT	Standard Penetration Test	MPS - Max	kimum Pa	rticle Size	e (mm)	VS - V	Very Soft
	R HA AD/	Ha T So	nd aug lid fligh	t auge	r: TC-Bit	— shown→ Water Inf			s	CSPT	(Split Spoon) Standard Penetration Test	LL - Liqu P75 - Pas	sing 75 µ	m sieve ((%)	S - 1 F - 1 St - 1	Soft Firm Stiff
CARL	WB RR	Wa	ashbor ck rolle	e drillin	g –	- Water Ou	itflow			P	(Solid Cone) Hand/Pocket Penetrometer	MOISTURE				St - S VSt - V H - I	√ery Stiff Hard
в год	VE		ry Eas	y (No F	Resistance) E	SAMPLES Bulk disturb	ed sam	ole	P V	'ID 'S	Photoionisation Detector Vane Shear; P=Peak	D - Dry M - Moi	st			RELATIV	E DENSITY
10.GLB	E F	Ea Fir	sy m		S	S Disturbed si ES Environmer	ample ital sam	ple			R=Residual (uncorrected kPa)	W - Wei PL - Plas	t stic limit			L - I	Very Loose Loose Medium Dense
	H VH	Ha Ve	rd ry Haro	d (Refu		J50 Thin wall 50 tube	mm dia	imeter				LL - Liqu w - Moi	uid limit sture con	tent		D - I	Very Dense
Refer to explanatory notes for details of abbreviations and basis of descriptions Cardno (Qld) Pty Ltd																	

C	D	Ca	rd	no now () Stante	C					TE	ST PIT LOG SHEET
Client: AARC Environmental Solutions Project: Land Based Effluent Disposal - MEDLI Modeling Location: Lake Vermont - Meadowbrook Project								ling			ŀ	lole No: TP04
_						ject		Job No: M31991	000		<u> </u>	Sheet: 1 of 1
_				.000 N7525112 ckhoe	.000			Angle from Horizontal: 9 Excavation Method: 60n				e Elevation:
				sions: 1.60m	LONG AND 0.	80m W	IDE					ctor: N/A
Da	ate Ex	cavat	ed: 2	4/1/22				Logged By: GM		(Checke	ed By: MF
	Exc	avatior	I	Sampling & T	Testing			Material E	Description			
Method	Resistance	Stability	Water	Sample Field Te	or tage of the set of	Graphic Log	Classification	SOIL TYPE, plasticity or particle charac colour, secondary and minor compor ROCK TYPE, grain size and type, cc fabric & texture, strength, weatheri defects and structure	nents blour,	Moisture Condition	Consistency Relative Density	STRUCTURE & Other Observations
	F			B 0.00 - 0.10 m				Sandy CLAY: medium to high plasticity fine to coarse grained sand, no odour, roots. rootlets present,	/, brown, no staining,		St	TOPSOIL
				B 0.10 - 0.60 m				MPS 1 LL 50 P75 65				
							CI			D		
					-							
								0.30m				
								Sandy CLAY: medium to high plasticity mottled grey, fine to medium grained sa	/, brown and, no			ALLUVIUM
					_			odour, no staining, MPS <1 LL 50 P75 70				
			pe		- 0.5							-
		0	Not Encountered									
X	i	Stable	ot Enc	B 0.60 - 1.20 m								
	н		ž								VSt	
					-							
							CI			D to M		
					-							
8001					-							
P D					- 1.0							
10M					- 1.0							
					_							
	,							1.20m				
								TERMINATED AT 1.20 m Target depth				
70.0					F							
					-							
					- 1.5							-
					-							
0					F							
1 1 1					ſ							
					Ļ							
	метно			WAT	(FR			IELD TESTS	Soil Descript	ors		SOIL CONSISTENCY
Ę	EX E	Excavato	or buck		Water Level on D	Date		PT Standard Penetration Test	MPS - Maxir	mum Pa	rticle Size	e (mm) VS - Very Soft
b H	HA H	Ripper Hand au Solid flig	ger	r: TC-Bit	shown Water Inflow		s	(Split Spoon) CSPT Standard Penetration Test	LL - Liquio P75 - Pass	u Limit (' ing 75 µ	∞) m sieve (%) S - Soft %) F - Firm St - Stiff
<u>ا</u>	NB۱	Vashboi Rock roll	e drillir	g	Water Outflow		P	(Solid Cone)	MOISTURE			VSt - Stiff H - Hard
P I	RESIST	ANCE		SAMF				ID Photoionisation Detector	D - Dry			RELATIVE DENSITY
	= E = F	/ery Eas Easy Firm	y (INO H	Resistance) B S	Bulk disturbed sam Disturbed sample			S Vane Shear; P=Peak R=Residual (uncorrected kPa)	M - Moist W - Wet PL - Plast			VL - Very Loose L - Loose
i I	- H	Hard /ery Har	d (Refu	isal) ES U50	Environmental sam Thin wall 50 mm dia tube	ple ameter			LL - Liquid W - Moist	d limit	tent	MD - Medium Dense D - Dense
		-		,	tube				10050			VD - Very Dense
	Refer to e	explanator ons and b	y notes f asis of d	or details of escriptions			С	ardno (Qld) Pty Ltd				

			Jai	rdi	now	Sta	ante	C						TE	ST PI	T LOC	SHEET
Client: AARC Environmental Solutions Project: Land Based Effluent Disposal - MEDLI Mod Location: Lake Vermont - Meadowbrook Project								EDLI M	ode	ling				ŀ	lole	No:	TP05
							ok Pro	ject			Job No: M31991						heet: 1 of 1
- H-					.000 N752 ckhoe	5019.000					Angle from Horizontal: Excavation Method: 6				e Elevat	ion:	
						0m LONG A	ND 0.8	30m W	DE		Excavation Method.				ctor: N/	A	
					4/1/22			-			Logged By: GM				ed By: M		
		Exca	vation		Samplir	ng & Testing					Materia	al Description					
	Method	Resistance	Stability	Water		mple or eld Test	Depth (m)	Graphic Log	Classification		SOIL TYPE, plasticity or particle char colour, secondary and minor comp ROCK TYPE, grain size and type, fabric & texture, strength, weath defects and structure	colour,	Moisture Condition	Consistency Relative Density	8	STRUCT Other Obs	
ľ		F			B 0.00 - 0.10	m					Sandy CLAY: medium to high plastic fine to coarse grained sand, no odou roots. rootlets present,	city, brown, ur, no staining,		St	TOPSOIL		
			1		B 0.10 - 0.60	m	-				MPS 1 LL 50 P75 65						
							-		CI				D				
										0.00							
							-			0.30m	Sandy CLAY: medium to high plastic mottled grey, fine to medium grained	city, brown			ALLUVIUI	N	
											odour, no staining, MPS <1 LL 50 P75 70	u sanu, no					
				per			- 0.5										-
				counter													
	-EX-		Stable	Not Encountered	B 0.60 - 1.20	m	+										
		н		z										VSt			
							-										
									CI				D to M				
SIC																	
bu loo																	
Ionitor							- 1.0										-
1010L																	
465 K I A, H							-			1.20m							-
uu uatgei /										1.2011	TERMINATED AT 1.20 m Target depth						
32 10.0.0							ŀ										
							ŀ										-
							- 1.5										_
<< Urawing							ŀ										
5							ŀ										
							F										
M3195																	
					ļ,	WATER			└ <u></u>		F0T0	0." D	-			0011 00	
	EX		cavato	r bucke	ət		evel on D	ate		IELD T PT	Standard Penetration Test	Soil Descrip MPS - Max	ximum Pa	rticle Size	e (mm)	VS -	NSISTENCY Very Soft
	R HA	Ha	pper and aug	jer	r: TC-B#	➡ shown ► Water In	flow		s	CSPT	(Split Spoon) Standard Penetration Test	LL - Liqu P75 - Pas	uid Limit ('	%)		F -	Soft Firm Stiff
	AD/ WE RR	8 W.	ashbor bck rolle	e drillin	r: TC-Bit g	Water O	utflow		P		(Solid Cone) Hand/Pocket Penetrometer	MOISTURE				St - VSt - H -	Very Stiff Hard
rog		SISTA	NCE)	SAMPLES		-1-		ID	Photoionisation Detector Vane Shear; P=Peak	D - Dry M - Moi				RELATIV	E DENSITY
0.GLE	E F	Ea Fir	nsy m	, יויט ר		B Bulk distur S Disturbed = ES Environme	sample		ľ	2	R=Residual (uncorrected kPa)	W - We PL - Plas	t			L -	Very Loose Loose Medium Dense
171170	H VH	Ha Ve	ard ery Haro	d (Refu		U50 Thin wall 5 tube	0 mm dia	meter				LL - Liqu	uid limit isture con	tent		D -	Medium Dense Dense Very Dense
	Refe	er to exp	planatory	notes f	or details of					ore	Ino (QId) Pty Ltd					-	,
٤∖	abb	reviation	ns and ba	asis of d	escriptions				U U	vai U							

0		Sal	rdi		Stante	C					TES	ST PIT LOG SHEET
Client: AARC Environmental Solutions Project: Land Based Effluent Disposal - MEDLI Modeling Location: Lake Vermont - Meadowbrook Project								ling			ŀ	lole No: TP06
Loc	ation	ו: I	_ake	Vermont - Mead	lowbrook Pro	ject		Job No: M31991				Sheet: 1 of 1
-				.000 N7525001.0 ckhoe	000			Angle from Horizontal: Excavation Method: 60				e Elevation:
				sions: 1.60m L	ONG AND 0.8	80m W	IDE	Excavation method. Of				ctor: N/A
Dat	e Ex	cavat	ed: 2	4/1/22				Logged By: GM		С	hecke	ed By: MF
	Exca	vation		Sampling & Te	esting			Material	Description			
Method	Resistance	Stability	Water	Sample o Field Tesi	Depth (m)	Graphic Log	Classification	SOIL TYPE, plasticity or particle chara colour, secondary and minor compo ROCK TYPE, grain size and type, c fabric & texture, strength, weather defects and structure	cteristic, nents g olour, g ing, S	Condition	Consistency Relative Density	STRUCTURE & Other Observations
	F			B 0.00 - 0.10 m				Sandy CLAY: medium to high plasticity brown-yellow, fine to coarse grained s odour, no staining, roots. rootlets pres	and, no		St	TOPSOIL
		1		B 0.10 - 0.60 m				MPS 1 LL 50 P75 60		F		
							CI			D		
					Ī							
								0.30m				
					F			Sandy CLAY: medium to high plasticit brown-yellow, fine to coarse grained s odour, no staining, MPS 1 LL 50 P75 65	y, and, no			ALLUVIUM
			Not Encountered		- 0.5			0.50m fine to medium grain size				-
- EX-	н	Stable	Not Enco	B 0.60 - 1.20 m							VSt	
					-		СІ		D	to M		
					-							
, ,					-							
					- 1.0							-
					-							
.								1.20m TERMINATED AT 1.20 m Target depth				
					-							
					-							
					- 1.5							-
					F							
					F							
					-							
					-							
E) R H/ AI W RF	Ri A Hi D/T So B W R Ri ESISTA ESISTA E Ei Fi Hi	kcavato ipper and aug blid fligh ashbor ock rolle	ger at auge e drillin er y (No F	r: TC-Bit g Resistance) B ES ES Lisal)	Water Level on D shown Water Inflow Water Outflow	ple	S S P	ID Photoionisation Detector	Soil Descriptor MPS - Maximu LL - Liquid L P75 - Passing MOISTURE D - Dry M - Moist W - Wet PL - Plastic I LL - Liquid II w - Moistur	um Part Limit (% g 75 μn limit imit	o) n sieve (S - Soft F - Firm St - Stiff VSt - Stiff H - Hard RELATIVE DENSITY VL - Very Loose L - Loose MD - Medium Dense D - Dense
Reab	fer to ex	planatory	/ notes f	or details of escriptions			C	ardno (Qld) Pty Ltd				VD - Very Dense

APPENDIX

SITE PHOTOGRAPHS

Photo 1: General Photo of Proposed Irrigation Area

Photo 2: Typical test pit profile. Note clay "lumps/clods" and the "streaks" the excavator has imprinted into the plastic clay on sides of test pit

Photo 3: "Lumps/Clods" of clay removed from test pit

Photo 4: Attempted Hand Auger. Note compaction of clay on the bottom/edges of the bore – resulting in auger refusal

APPENDIX

LABORATORY RESULTS

ENT:	CARDNO (QLD) PTY LTD		TURNARO	UND REQUIREMEN	T 🗹 Standard TAT	(List due d	ate):						FOR	LARGRAT	ORYUSEION	LY (Circle)	19 Q	and the second	
	Mackay		(Standard TA)	may be longer for some Trace Organics)				datə):					Cost	riy Seal inter	e		N N	e Ne	
JECT:	Lake Vermont Meadowbrook		ALS QUOT		4/16 (Cardno blani	et qoute)			coc	SEQUENCE	NUMBER (Çircle)	Ected rec-tre	oli / frozen ka 19	aicke present	1940	ek si N	e NA	
ER NUMBER:	M31991							COC:					Rand	on-Sample I.	mperature 68.5	ecept.			
JECT MANAGER:			PH: 07 3310 2					OF:					BELINOU	ISHED BY-		RECEI	VED BY:		
APLER:	Gilson DeMello	-	MOBILE: 040		RELINQUISHED	BY:		RECE					ALK				TOYIC		
emailed to ALS?			MAT (or defaul): NO	Gilson DeMelio			DATE	E/TIME:	·			DATE	E:		DATE/	IME:	-	
	@cardno.com.au/Mark. Farrey@ca @cardno.com.au/ Mark. Farrey@ca	All and a second se			25/01/2022			31	H11-	7	8:30	2	311	22	6:0	D J a	пме:) • Э Э С	830	
	HANDLING/STORAGE OR DISPOS							Q-1	H^{++c}	<u>س</u>	<u></u>								
LS USE ONLY	SAMPI	LE DETAILS olid(S) Water(W)		CONTAIN	ER INFORMATION					ncluding SL pecify Total (unfi						Addi	tional Inform	ation	
		1					<u> </u>												
LAB ID	SAMPLE ID	14/12/2021	MATRIX	TYPE & PRE: (refer to coo		TOTAL BAGS	1			· · · · · · · · · · · · · · · · · · ·				Alton Point + Field Cepacity) Bul					
							Ного	NT-1S	EN020-D40	EA058, EA006, EA014	E P004	EK080	AG-2	Water Holding Capsclty (M Density, Porosity					
1	A 0.0 - 0.1	14/12/2021	Soil	Be	ıg	1		x	×	×	×	×	×	x					i i i i i i i i i i i i i i i i i i i
2	A 0.1 - 0.6	14/12/2021	Soil	Ba	g	1		x	x	x	x	x	×	×					
	A 0.6 - 1.2	14/12/2021	Soll	Br	ıg	1		×	×	×	x	x	x	x					
	B 0.0 - 0.1	14/12/2021	Soli	Ba	ng	1		×	×	×	×	×	×	x					
<u> </u>		14/12/2021	Soil	Bi		1		x	x	x	x	x	x	×					l
	B 0.1 - 0.6					1		×	x	×	×	×	×	x					i
6	B 0.6 - 1.2	14/12/2021	Soil	B										x					l
7	C 0.0 - 0.1	14/12/2021	Soll	B:	ag	1		×	x	×	×	×	×						· .
8	C 0.1 - 0.6	14/12/2021	Soll	Bi	eg	1		×	×	×	×	×	×	×				Envir	onmental Di
9	C 0.6 - 1.2	14/12/2021	Soli	8:	ag	1		×	×	x	×	x	×	×			,	Brisba	
10	D 0.0 - 0.1	14/12/2021	Soil	B	ag	1	×											Wor	rk Order Refer
1	D 0.1 - 0.6	14/12/2021	Soil	B	ag	1	×											E	B2202
12 11	D 0.8 - 1.2	14/12/2021	Soil		#g	1	x .	1		1						-			
	E 0.0 - 0.1	14/12/2021	Soil	B	ag	1	×		<u> </u>		1	1		1					
12		14/12/2021	Soll		ag	1	×	+	1	-	+		1	-					
1 mil	E 0.1 - 0.6					+						<u> </u>	1	+	+				
T. and the second se	E 0.6 - 1.2	14/12/2021	Soll		ag	1	×	<u> </u>				+	-						l K vé trenk tér
1	F D.D - 0.1	14/12/2021	Soli	8	ag	1	×		<u> </u>										
17	F 0.1 - 0.6	14/12/2021	Soll	В	ag	1	×					<u> </u>						Telephon	ne 1 + 61-7-3243 72
16	F 0.6 - 1.2	14/12/2021	Soll	В	ag	1	×												4
Cone S			1			-	T			1	1	1	1						1

Water Container Codes: P = Unpresenved Plastic; N = Nithito Presenved CRC = Nithe Preserved CRC = Nithe Preserved CRC = Nithe Preserved Plastic; S = Sodium Hydroxobe Preserved Hastoc; Au = Animetyl Sodium State Preserved Plastic; S = Sodium Hydroxobe Preserved Hastoc; Au = Animetyl Sodium Bitulphate Preserved Plastic; S = Sodium Hydroxobe Preserved Amber Glass; H = HCI preserved Plastic; H = HCI preserved Au Sodium Bitulphate Preserved; N = VoA Vial HCI Preserved; N = Note: S = Solituin Hydroxobe Preserved; N = Note: S = Solituin Bitulphate Preserved; N = Note: S = Solituin Hydroxobe Preserved; N = Note: S = Note: S = HCI preserved; N = Note: S = Solituin Bitulphate Solity; S = Solituin Bitulphate Preserved; N = Note: S = Solituin Bitulphate Solity; S = Solituin B

. . .

ENCLIDENCE)

CERTIFICATE OF ANALYSIS

Work Order	EB2202397	Page	: 1 of 7	
Client	: CARDNO (QLD) PTY LTD	Laboratory	: Environmental Division Bris	sbane
Contact	: MARK FARREY	Contact	: Nidhi Bhimani	
Address	: 71 Maggiolo Drive	Address	: 2 Byth Street Stafford QLD	Australia 4053
	Paget 4740			
Telephone	: 33102309	Telephone	: +61-7-3243 7222	
Project	: Lake Vermont Meadowbrook	Date Samples Received	: 01-Feb-2022 08:30	WIIII.
Order number	: M31991	Date Analysis Commenced	: 01-Feb-2022	
C-O-C number	:	Issue Date	: 14-Feb-2022 09:55	
Sampler	: GILSON DE MELLO			Hac-MRA NATA
Site	:			
Quote number	: EN/024/18 (Primary work)			Accreditation No. 825
No. of samples received	: 18			Accredited for compliance with
No. of samples analysed	: 9			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Inorganics, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- ALS is not NATA accredited for the analysis of Exchangeable Aluminium and Exchange Acidity in soils when performed under ALS Method ED005.
- ALS is not NATA accredited for the analysis of Exchangeable Cations on Alkaline Soils when performed under ALS Method ED006.
- Bulk Density analysis is conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- ED008-Exchangeable Cations with pre-treatement: Unable to calculate Magnesium/Potassium Ratio for sample 'A 0.1-0.6' (EB2202397-002) as required Exchangeable Magnesium and/or Potassium results are less
 than the limit of reporting.
- ED008-Exchangeable Cations with pre-treatement: Unable to calculate Magnesium/Potassium Ratio for sample 'C 0.6-1.2' (EB2202397-009) as required Exchangeable Magnesium and/or Potassium results are less
 than the limit of reporting.
- ED006 (Exchangeable Cations on Alkaline Soils): Unable to calculate Magnesium/Potassium Ratio results for some samples as required Exchangeable Potassium results are less than the limit of reporting.
- ED008-Exchangeable Cations with pre-treatement: Unable to calculate Magnesium/Potassium Ratio for sample 'A 0.6-1.2' (EB2202397-003) as required Exchangeable Magnesium and/or Potassium results are less than the limit of reporting.
- ED008-Exchangeable Cations with pre-treatement: Unable to calculate Magnesium/Potassium Ratio for sample 'B 0.6-1.2' (EB2202397-006) as required Exchangeable Magnesium and/or Potassium results are less than the limit of reporting.
- EA058 Emerson: V. = Very, D. = Dark, L. = Light, VD. = Very Dark
- ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).
- ALS is not NATA accredited for the analysis of bulk density in a soil matrix.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	A 0.0-0.1	A 0.1-0.6	A 0.6-1.2	B 0.0-0.1	B 0.1-0.6
		Sampli	ng date / time	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00
Compound	CAS Number	LOR	Unit	EB2202397-001	EB2202397-002	EB2202397-003	EB2202397-004	EB2202397-005
				Result	Result	Result	Result	Result
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	7.1	6.7	5.2	6.2	7.9
EA006: Sodium Adsorption Ratio (SA	AR)							
Sodium Adsorption Ratio		0.01	-	10.8	35.8	44.3	7.15	35.4
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	68	715	1020	35	538
EA014 Total Soluble Salts								
Total Soluble Salts		5	mg/kg	233	2430	3490	120	1830
EA051 : Bulk Density								
ØBulk Density	BULK_DENSITY	1	kg/m3	1230	1370	1380	1150	1150
EA055: Moisture Content (Dried @ 10		·						
Moisture Content (Dried @ 1)		1.0	%	6.7	11.4	12.3	7.4	9.8
		1.0	70	0.1	11.4	12.5	1.4	3.0
EA058: Emerson Aggregate Test Color (Munsell)		-	-		Dark Gray (10YR 4/1)			Dark Gray (10YR 4/1)
		-	-	Dark Grayish Brown (10YR 4/2)	Dark Gray (101K 4/1)	Dark Grayish Brown (10YR 4/2)	Very Dark Grayish Brown (10YR 3/2)	Dark Gray (101K 4/1)
Texture		-	_	Medium Clay	Medium Heavy Clay	Medium Clay	Medium Clay	Medium Heavy Clay
Emerson Class Number	EC/TC	-	_	2	1	1	2	2
	20/10			_	•	•	-	
ED005: Exchange Acidity Ø Exchange Acidity		0.1	meq/100g			0.3		
Ø Exchangeable Aluminium		0.1	meq/100g			<0.1		
-		0.1	moq, roog					
ED006: Exchangeable Cations on All		0.2	meq/100g					7.3
Ø Exchangeable Calcium		0.2	meq/100g					7.6
Ø Exchangeable Magnesium Ø Exchangeable Potassium		0.2	meq/100g					<0.2
v Exchangeable i olassiulli								
Ø Exchangeable Sodium								
		0.2	meq/100g					2.8
Ø Cation Exchange Capacity		0.2 0.2	meq/100g meq/100g					2.8 17.7
Ø Cation Exchange Capacity Ø Exchangeable Sodium Percent	 	0.2 0.2 0.2	meq/100g		 	 		2.8 17.7 16.0
Ø Cation Exchange Capacity Ø Exchangeable Sodium Percent Ø Calcium/Magnesium Ratio		0.2 0.2	meq/100g meq/100g %		 	 		2.8 17.7
Ø Cation Exchange Capacity Ø Exchangeable Sodium Percent Ø Calcium/Magnesium Ratio ED007: Exchangeable Cations	 	0.2 0.2 0.2 0.2	meq/100g meq/100g %	 		 		2.8 17.7 16.0 1.0
Ø Cation Exchange Capacity Ø Exchangeable Sodium Percent Ø Calcium/Magnesium Ratio ED007: Exchangeable Cations Exchangeable Calcium	 	0.2 0.2 0.2 0.2 0.2	meq/100g meq/100g % - meq/100g	 12.4			 11.3	2.8 17.7 16.0 1.0
Ø Cation Exchange Capacity Ø Exchangeable Sodium Percent Ø Calcium/Magnesium Ratio ED007: Exchangeable Cations Exchangeable Calcium Exchangeable Magnesium	 	0.2 0.2 0.2 0.2 0.1 0.1	meq/100g meq/100g % - meq/100g meq/100g	 12.4 11.1			 11.3 8.1	2.8 17.7 16.0 1.0
Ø Cation Exchange Capacity Ø Exchangeable Sodium Percent Ø Calcium/Magnesium Ratio ED007: Exchangeable Cations Exchangeable Calcium Exchangeable Magnesium Exchangeable Potassium		0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1	meq/100g meq/100g % - meq/100g meq/100g meq/100g	 12.4 11.1 0.2			 11.3 8.1 0.1	2.8 17.7 16.0 1.0
Exchangeable Magnesium	 	0.2 0.2 0.2 0.2 0.1 0.1	meq/100g meq/100g % - meq/100g meq/100g	 12.4 11.1			 11.3 8.1	2.8 17.7 16.0 1.0

Page	: 4 of 7
Work Order	: EB2202397
Client	: CARDNO (QLD) PTY LTD
Project	Lake Vermont Meadowbrook

Gub-Matrix: SOIL (Matrix: SOIL)			Sample ID	A 0.0-0.1	A 0.1-0.6	A 0.6-1.2	B 0.0-0.1	B 0.1-0.6
		Sampli	ing date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	EB2202397-001	EB2202397-002	EB2202397-003	EB2202397-004	EB2202397-005
			-	Result	Result	Result	Result	Result
ED007: Exchangeable Cations - Continu	ed							
Calcium/Magnesium Ratio		0.1	-	1.1			1.4	
Magnesium/Potassium Ratio		0.1	-	61.4			70.7	
ED008: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g		8.3	4.2		
Exchangeable Magnesium		0.1	meq/100g		9.2	8.1		
Exchangeable Potassium		0.1	meq/100g		<0.1	<0.1		
Exchangeable Sodium		0.1	meq/100g		3.3	3.1		
Cation Exchange Capacity		0.1	meq/100g			15.8		
Cation Exchange Capacity		0.1	meq/100g		21.0			
Exchangeable Sodium Percent		0.1	%		15.6	20.0		
Calcium/Magnesium Ratio		0.1	-		0.9	0.5		
ED093S: Soluble Major Cations								
Calcium	7440-70-2	10	mg/kg	<10	10	10	<10	<10
Magnesium	7439-95-4	10	mg/kg	<10	10	20	<10	<10
Sodium	7440-23-5	10	mg/kg	80	620	870	50	490
Potassium	7440-09-7	10	mg/kg	<10	<10	<10	<10	<10
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg	<20	<20	<20	<20	<20
EK057G: Nitrite as N by Discrete Analy	vser							
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	0.4	0.2	<0.1	0.4	<0.1
EK058G: Nitrate as N by Discrete Anal								
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	2.2	1.1	<0.1	2.7	1.0
EK059G: Nitrite plus Nitrate as N (NOx		veor	0.0					-
Nitrite + Nitrate as N (Sol.)) by Discrete Anal	0.1	mg/kg	2.6	1.3	<0.1	3.1	1.0
. ,				2.0		0.1	•	
EK061G: Total Kjeldahl Nitrogen By Dis Total Kjeldahl Nitrogen as N	screte Analyser	20	mg/kg	1260	530	190	890	600
, ,		20	ilig/itg	1200	550	130	000	000
EK062: Total Nitrogen as N (TKN + NO» ^ Total Nitrogen as N		20	ma/ka	1260	530	190	890	600
-		20	mg/kg	1200	530	190	090	000
EK067G: Total Phosphorus as P by Dis	crete Analyser	-		000	400	454	040	470
Total Phosphorus as P		2	mg/kg	202	188	154	219	152
EK080: Bicarbonate Extractable Phosp	horus (Colwell)							-
Bicarbonate Ext. P (Colwell)		5	mg/kg	5	<5	<5	<5	<5

Page	5 of 7
Work Order	: EB2202397
Client	: CARDNO (QLD) PTY LTD
Project	Lake Vermont Meadowbrook

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	A 0.0-0.1	A 0.1-0.6	A 0.6-1.2	B 0.0-0.1	B 0.1-0.6
		Samplii	ng date / time	14-Dec-2021 00:00				
Compound	CAS Number	LOR	Unit	EB2202397-001	EB2202397-002	EB2202397-003	EB2202397-004	EB2202397-005
				Result	Result	Result	Result	Result
EP004: Organic Matter - Continued								
Organic Matter		0.5	%	1.9	2.0	0.5	3.6	1.0

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	B 0.6-1.2	C 0.0-0.1	C 0.1-0.6	C 0.6-1.2	
(Sampli	ing date / time	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00	
Compound	CAS Number	LOR	Unit	EB2202397-006	EB2202397-007	EB2202397-008	EB2202397-009	
				Result	Result	Result	Result	
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit	5.7	8.2	8.1	6.6	
EA006: Sodium Adsorption Ratio (S	AR)							
Sodium Adsorption Ratio		0.01	-	57.4	12.9	47.6	46.0	
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	µS/cm	652	308	973	1290	
EA014 Total Soluble Salts			P					
Total Soluble Salts		5	mg/kg	2220	1050	3310	4400	
		÷						I
EA051 : Bulk Density ØBulk Density	BULK_DENSITY	1	kg/m3	1220	1170	1050	1440	
-		I	kg/m5	1220		1000	1440	
EA055: Moisture Content (Dried @ 1 Moisture Content		1.0	0/	9.4	6.0	0.0	0.0	1
		1.0	%	8.4	6.9	9.9	9.6	
EA058: Emerson Aggregate Test							1	1
Color (Munsell)		-	-	Dark Grayish Brown	Dark Grayish Brown	Dark Grayish Brown	Olive Brown (2.5Y	
				(2.5Y 4/2)	(2.5Y 4/2)	(2.5Y 4/2)	4/3)	
Texture		-	-	Light Medium Clay	Medium Clay	Light Medium Clay	Medium Clay	
Emerson Class Number	EC/TC	-	-	1	3	2	1	
ED005: Exchange Acidity								
Ø Exchange Acidity		0.1	meq/100g	0.2				
Ø Exchangeable Aluminium		0.1	meq/100g	<0.1				
ED006: Exchangeable Cations on A	Ikaline Soils							
Ø Exchangeable Calcium		0.2	meq/100g		10.6	6.7		
Ø Exchangeable Magnesium		0.2	meq/100g		9.1	9.2		
ø Exchangeable Potassium		0.2	meq/100g		0.2	<0.2		
ø Exchangeable Sodium		0.2	meq/100g		1.6	5.2		
Ø Cation Exchange Capacity		0.2	meq/100g		21.5	21.3		
Ø Exchangeable Sodium Percent		0.2	%		7.6	24.5		
ø Calcium/Magnesium Ratio		0.2	-		1.2	0.7		
ø Magnesium/Potassium Ratio		0.2	-		44.8			
ED008: Exchangeable Cations								
Exchangeable Calcium		0.1	meq/100g	2.4			2.4	
Exchangeable Magnesium		0.1	meq/100g	5.5			6.2	
Exchangeable Potassium		0.1	meq/100g	<0.1			<0.1	
							2.0	
Exchangeable Sodium		0.1	meq/100g	2.2			2.9	

Page	: 7 of 7
Work Order	: EB2202397
Client	: CARDNO (QLD) PTY LTD
Project	Lake Vermont Meadowbrook

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	B 0.6-1.2	C 0.0-0.1	C 0.1-0.6	C 0.6-1.2	
		Sampli	ing date / time	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00	14-Dec-2021 00:00	
Compound	CAS Number	LOR	Unit	EB2202397-006	EB2202397-007	EB2202397-008	EB2202397-009	
				Result	Result	Result	Result	
ED008: Exchangeable Cations - Contin	nued							
Cation Exchange Capacity		0.1	meq/100g				11.6	
Exchangeable Sodium Percent		0.1	%	21.3			25.1	
Calcium/Magnesium Ratio		0.1	-	0.4			0.4	
ED093S: Soluble Major Cations								
Calcium	7440-70-2	10	mg/kg	<10	20	10	10	
Magnesium	7439-95-4	10	mg/kg	20	20	10	20	
Sodium	7440-23-5	10	mg/kg	570	280	820	1090	
Potassium	7440-09-7	10	mg/kg	<10	<10	<10	<10	
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg	<20	<20	<20	<20	
EK057G: Nitrite as N by Discrete Ana	lyser							
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	0.2	0.5	0.1	<0.1	
EK058G: Nitrate as N by Discrete Ana	alyser							
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	0.2	4.1	2.6	1.6	
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Anal	lyser						
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	0.4	4.6	2.7	1.6	
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg	150	820	300	130	
EK062: Total Nitrogen as N (TKN + NC	Dx)							
^ Total Nitrogen as N		20	mg/kg	150	820	300	130	
EK067G: Total Phosphorus as P by D	iscrete Analyser							
Total Phosphorus as P		2	mg/kg	103	194	156	102	
EK080: Bicarbonate Extractable Phos	phorus (C <u>olwell)</u>							
Bicarbonate Ext. P (Colwell)		5	mg/kg	<5	<5	<5	<5	
EP004: Organic Matter								
Organic Matter		0.5	%	<0.5	1.9	0.7	0.8	

Inter-Laboratory Testing Analysis conducted by ALS Sydney, NATA accreditation no. 825, site no. 10911 (Chemistry) 14913 (Biology).

(SOIL) EA051 : Bulk Density

Certificate of Analysis signatory:

P. Colution

Test Code/Name	[454] Clod Density	- Soil			
Lab Reference (LR)	040222.377	Client Name	ALS		
SampleID	(As Listed)	Client Contact	SUB RESULTS		
		Project Name	ALS Batch# EB2202397		
Report Date	21/02/2022	Job Number	507454		
Sample Received Date	3/02/2022	Order Number			
Sample Disposal Date	5/04/2022	Chain of Custody			
Sample Packaging	Plastic Bag	Client Email	subresults.briHi Jodi@alsglobal.com		
Temperature	Ambient	Client Address	2 Byth St Stafford Brisbane Queensland		
Particle Density g/cc 2.65 Assumed particle density					
	<u>Analytical Method</u> : Density of soil clod dried at 40°C. Clod volume measured by displacement.				

Clod density calculated as: Dry Mass (40^oC)/Displacement Volume.

Particle density calculated as 1-Density/Particle Density

S#	SampleID	Clod Density g/cc	Porosity %
1	A 0-0.1	1.32	50%
2	A 0.1-0.6	1.86	30%
3	A 0.6-1.2	1.84	31%
4	B 0-0.1	1.56	41%
5	B 0.1-0.6	1.65	38%
6	B 0.6-1.2	1.71	35%
7	C 0-0.1	1.65	38%
8	C 0.1-0.6	1.61	39%
9	C 0.6-1.2	1.81	32%

Certificate of Analysis signatory:

Phone: +617 3289 7179 Bio-Track Pty Ltd ABN 91 056 237 275

Test Code/Name	[75] Water Ho	75] Water Holding Capacity				
Lab Reference (LR)	040222.376	Client Name	ALS			
SampleID(s)	(As Listed)	Client Contact	SUB RESULTS			
		Project Name	ALS Batch# EB2202397			
Report Date	11/02/2022	Job Number				
Sample Received Date	3/02/2022	Order Number				
Sample Disposal Date	5/04/2022	Chain of Custody				
Sample Packaging	Plastic Bag	Client Email				
Temperature	Ambient	Client Address	2 Byth St Stafford Brisbane Queensland			
	-					

Moisture Content at Field Capacity and Wilting Point calculated using Moisture Tension Plate.

*NM = not measured

S#	SampleID	MC% Grav. Field Capacity 30 kPa	MC% Grav. Wilting Point 1500 kPa	Available Water % Grav.
1	A 0-0.1	37.48	13.25	24.22
2	A 0.1-0.6	41.84	16.43	25.41
3	A 0.6-1.2	41.98	16.74	25.23
4	B 0-0.1	33.63	11.91	21.72
5	B 0.1-0.6	35.26	13.01	22.24
6	B 0.6-1.2	30.92	10.86	20.06
7	C 0-0.1	35.02	13.51	21.51
8	C 0.1-0.6	36.63	13.93	22.70
9	C 0.6-1.2	36.33	16.86	19.47

APPENDIX

MEDLI 2.0 OUTPUT FILE

Enterprise: Lake Vermont

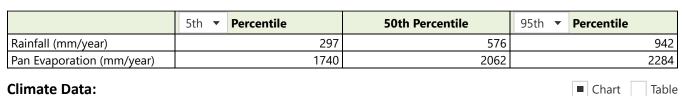
Description:

Meadowbrook Project

Client: AARC

MEDLI User: CARDNO\mark.farrey

Scenario Details:Lake Vermont specific clay. 3 layers based on clod density.3.6 ha at a maximum of 2mm/day (in practice 1.1mm/day would occur)

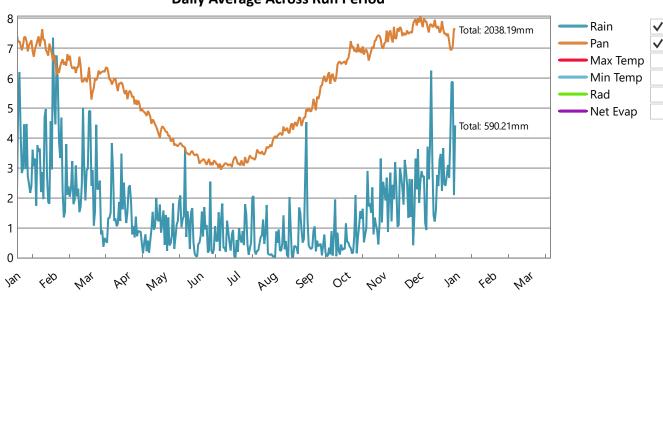

MEDLI v2.1.0.0 Scenario Report - Full Run

24/02/2022 08:25:29

Climate Data: Lake Vermont_-22.35_148.35 (2), -22.35°, 148.35°

Run Period: 01/01/1970 to 31/12/2017 48 years, 0 days

Climate Statistics:

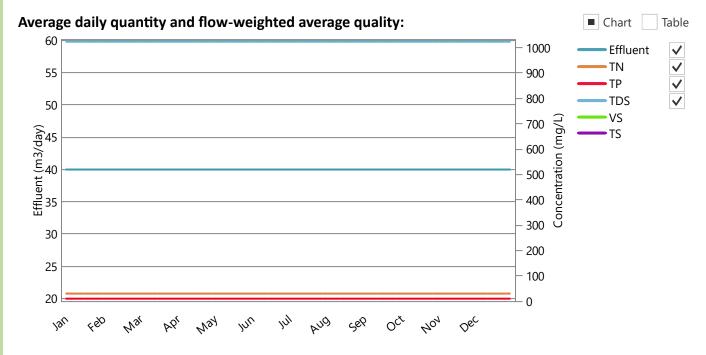


Climate Data:

DESCRIPTION

Monthly

Daily


Daily Average Across Run Period

MEDLI v2.1.0.0 Scenario Report - Full Run

24/02/2022 08:25:29

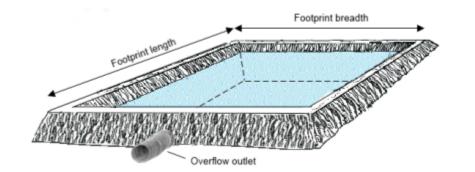
Effluent type: New Sewage Treatment Plant

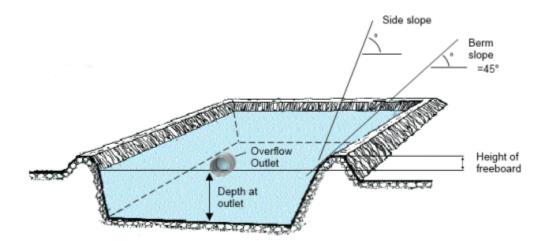
Wastestream before any recycling or pretreatment

Wastestream after any recycling and pretreatment if applicable

Effluent quantity: 14610.00 m3/year or 40.00 m3/day (Min-Max: 40.00 - 40.00)

Flow-weighted average (minimum - maximum) daily effluent quality entering pond system:


	Concentration (mg/L)	Load (kg/year)
Total Nitrogen	30.00 (30.00 - 30.00)	438.30 (438.00 - 439.20)
Total Phosphorus	10.00 (10.00 - 10.00)	146.10 (146.00 - 146.40)
Total Dissolved Salts	1024.00 (1024.00 - 1024.00)	14960.64 (14950.40 - 14991.36)
Volatile Solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Total Solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)


MEDLI v2.1.0.0 Scenario Report - Full Run

Pond system: 1 closed storage tank

Pond system details:

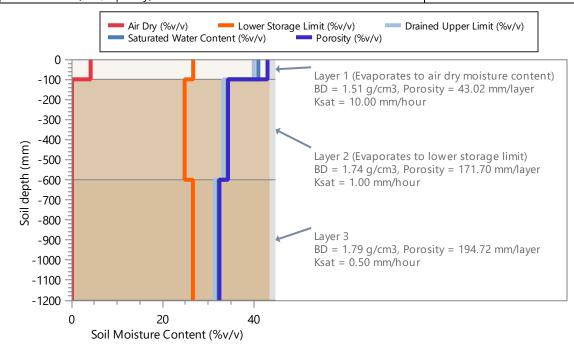
	Pond 1
Maximum pond volume (m3)	120.00
Minimum allowable pond volume (m3)	0.00
Pond depth at overflow outlet (m)	3.00
Maximum water surface area (m2)	40.00
Pond footprint length (m)	6.32
Pond footprint width (m)	6.32
Pond catchment area (m2)	40.00
Average active volume (m3)	0.00

Irrigation pump limits:

Minimum pump rate limit (ML/day)	0.00
Maximum pump rate limit (ML/day)	9999999.00

Shandying water:

Annual allocation of fresh water available for shandying (m3/year)	0.00
Maximum rate of application of fresh water (ML/day)	0.00
Nitrogen concentration (mg/L)	0.00
Salinity (dS/m)	0.00
Minimum sha <mark>nd</mark> y water is used	False

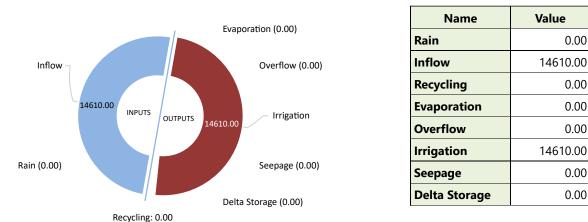

DESCRIPTION

Land: New Paddock

Area (ha): 3.60

Soil Type: Grey Clay - Lake Vermont, 1200.00 mm defined profile depth

Profile Porosity (mm)	409.43
Profile saturation water content (mm)	406.30
Profile drained upper limit (or field capacity) (mm)	395.40
Profile lower storage limit (or permanent wilting point) (mm)	310.58
Profile available water capacity (mm)	84.82
Profile limiting saturated hydraulic conductivity (mm/hour)	0.50
Surface saturated hydraulic conductivity (mm/hour)	10.00
Runoff curve number II (coefficient)	75.00
Soil evaporation U (mm)	6.00
Soil evaporation Cona (mm/sqrt day)	3.50

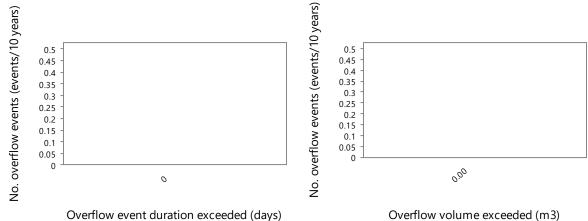

Plant Data: Continuous Rhodes Grass Pasture

Average monthly cover (fraction) (minimum - maximum)	0.63 (0.58 - 0.70)
Maximum crop factor at 100% cover (mm/mm) (Maximum crop coefficient 0.9 x Pan coefficient 1)	0.90
Total plant cover (both green and dead) left after harvest (fraction)	1.00
Maximum potential root depth in defined soil profile (mm)	1200.00
Salt tolerance	Tolerant
Salinity threshold EC sat. ext. (dS/m)	7.00
Proportion of yield decrease per dS/m increase (fraction/dS/m)	0.03

DESCRIPTION

Pond System Water Performance - Overflow: 1 closed storage tank

Capacity of wet weather storage pond: 120 m3



Pond System Water Balance (m3/year)

Overflow Diagnostics

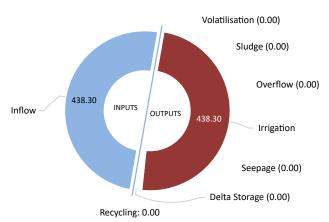
PERFORMANCE

Volume of overflow (m3/year)	0.00
No. days pond overflows (days/year)	0.00
Average duration of overflow (days)	0.00
Effluent Reuse (Proportion of Inflow + Net Rain Gain that is Irrigated) (fraction)	1.00
Probability of at least 90% reuse (fraction)	1.00

Overflow event duration exceeded (days)

Export plot

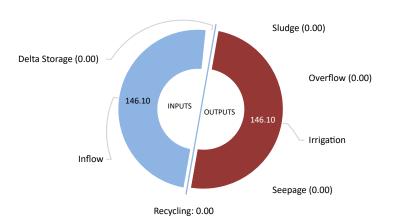
Probability of exceedance (%) 100 90 80 70 60 50 40 30 20 10 0 0,6 0.1 0^{,9} 09 ^ <u>``</u> ~? <u>ر</u>؟ <u>م</u> ۹ <u>ر</u>ج 05 Export plot Annual reuse (fraction)

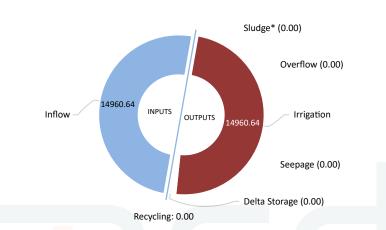

MEDLI v2.1.0.0 Scenario Report - Full Run

24/02/2022 08:25:29

PERFORMANCE

Pond System Performance - Nutrient: 1 closed storage tank


Pond System Nutrients and Salt Balance:


Name	Value
Inflow	438.30
Recycling	0.00
Volatilisation	0.00
Sludge	0.00
Overflow	0.00
Irrigation	438.30
Seepage	0.00
Delta Storage	0.00

Phosphorus Balance (kg/year)

Nitrogen Balance (kg/year)

Salt Balance (kg/year)

Name	Value
Inflow	146.10
Recycling	0.00
Sludge	0.00
Overflow	0.00
Irrigation	146.10
Seepage	0.00
Delta Storage	0.00

Name	Value
Inflow	14960.64
Recycling	0.00
Sludge*	0.00
Overflow	0.00
Irrigation	14960.64
Seepage	0.00
Delta Storage	0.00

* Salt removal in sludge is not calculated from the pond salt balance. However if salt could be assumed to be present in the sludge at the same concentration as in the pond supernatant (up to a maximum of salt added in inflow) - then salt accumulation in the sludge could be 0.00 kg/year

Pond System Sludge Accumulation: 0.00 kg dwt/year

Pond System Performance - Nutrient: 1 closed storage tank

Pond Nutrient Concentrations and Salinity:

Average across simulation period	Pond 1
Average nitrogen concentration of pond liquid (mg/L)	30.00
Average phosphorus concentration of pond liquid (mg/L)	10.00
Average salinity of pond liquid (dS/m)	1.60

Value on final day of simulation period	Pond 1
Final nitrogen concentration of pond liquid (mg/L)	N.D.*
Final phosphorus concentration of pond liquid (mg/L)	N.D.*
Final salinity of pond liquid (dS/m)	N.D.*

* Not determined. Pond is empty.

MEDLI v2.1.0.0 Scenario Report - Full Run

24/02/2022 08:25:29

Irrigation Performance:

Water Use: (assumes 100% Irrigation Efficiency)

Pond water irrigated (m3/year)	14610.00
Average Shandy water irrigation (m3/year) (minimum - maximum)	0.00 (0.00 - 0.00)
Total water irrigated (m3/year)	14610.00
Proportion of irrigation events requiring shandying (fraction of events)	0.00
Proportion of years shandying water allocation of 0 m3/year is exceeded (fraction of years)	0.00
Average exceedance as a proportion of annual shandy water allocation (fraction of allocation) (minimum - maximum)	0.00 (0.00 - 0.00)

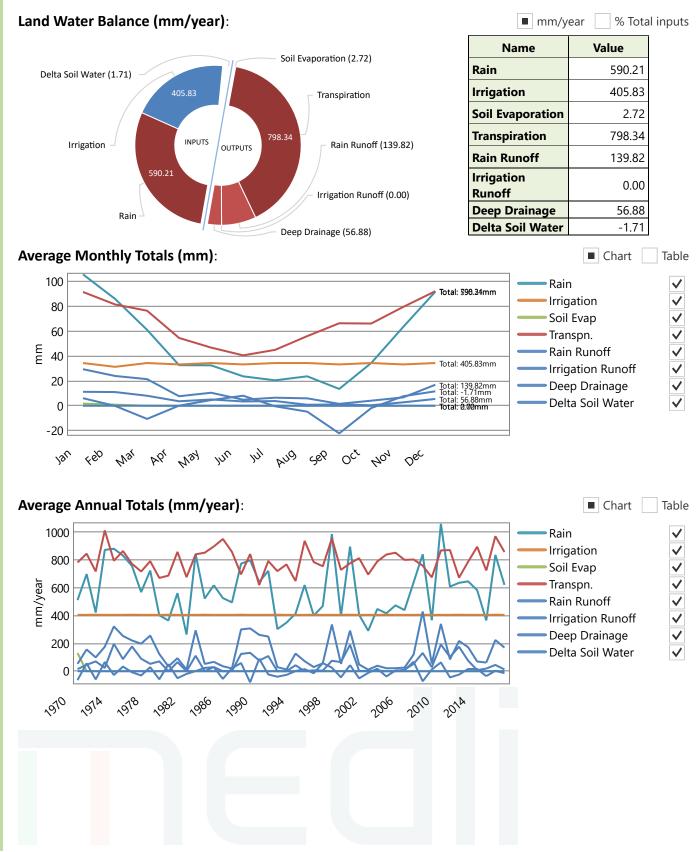
Irrigation Quality:

Average nitrogen concentration of irrigation water - before ammonia loss during irrigation (mg/L)	30.00
Average nitrogen concentration of irrigation water - after ammonia loss during irrigation (mg/L)	30.00
Average phosphorus concentration of irrigation water (mg/L)	10.00
Average salinity of irrigation water (dS/m)	1.60

Irrigation Diagnostics:

Proportion of Days irrigation occurs (fraction)	1.00

MEDLI v2.1.0.0 Scenario Report - Full Run


U

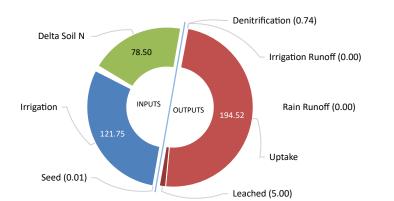
PERFORMAN

Land Performance - Soil Water

Paddock: New Paddock, 3.6 ha

Soil Type: Grey Clay - Lake Vermont, 84.82 mm PAWC at maximum root depth

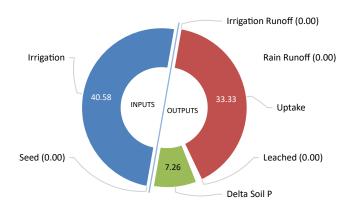
PERFORMANCE


Land Performance - Soil Nutrient

Paddock: New Paddock, 3.6 ha

Soil Type: Grey Clay - Lake Vermont

Irrigation ammonium volatilisation losses (kg/ha/year): 0.00


Proportion of total nitrogen in irrigated effluent as ammonium (fraction): 0.10

Land Nitrogen Balance (kg/ha/year)

Value
0.01
121.75
0.74
0.00
0.00
194.52
5.00
-78.50

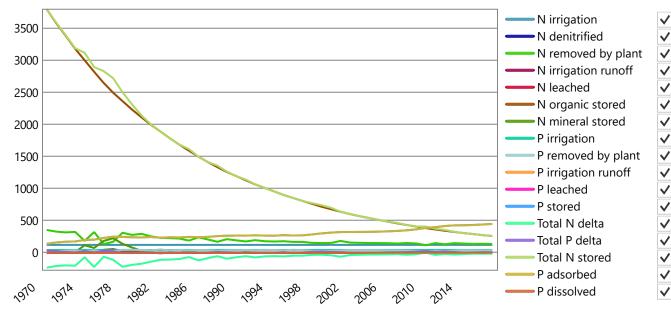
Land Phosphorus Balance (kg/ha/year)

Name	Value
Seed	1.88E-03
Irrigation	40.58
Irrigation Runoff	0.00
Rain Runoff	0.00
Uptake	33.33
Leached	1.77E-03
Delta Soil P	7.26

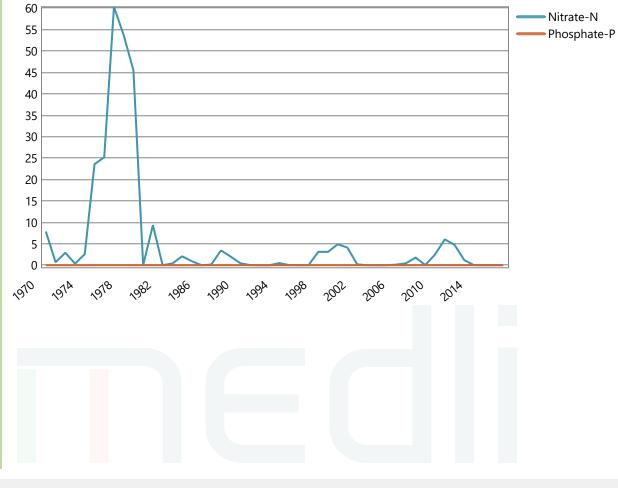
MEDLI v2.1.0.0 Scenario Report - Full Run

O

PERFORMA


Paddock Nutrient Impact

Land Performance - Soil Nutrient


Paddock: New Paddock, 3.6 ha

Soil Type: Grey Clay - Lake Vermont

Annual Nutrient Totals (kg/ha):

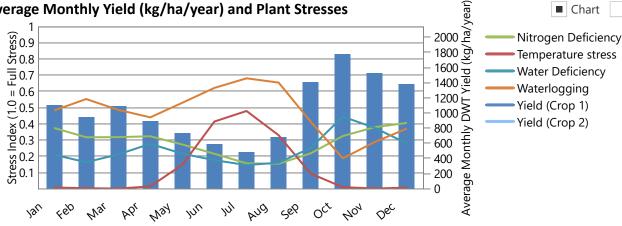
Annual Nutrient Leaching Concentration (mg/L):

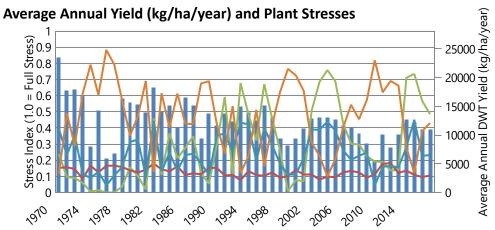
MEDLI v2.1.0.0 Scenario Report - Full Run

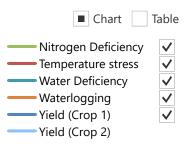
Plant Performance and Nutrients

Paddock: New Paddock, 3.6 ha

Soil Type: Grey Clay - Lake Vermont


Plant: Continuous Rhodes Grass Pasture


Average annual shoot dry matter yield (kg/ha/year)	12621.81 (5585.36 - 23471.68)
Average monthly plant (green) cover (fraction) (minimum - maximum)	0.63 (0.58 - 0.70)
Average monthly root depth (mm) (minimum - maximum)	1198.02 (1185.06 - 1200.00)


Nutrient Uptake (minimum - maximum):

Average annual net nitrogen removed by plant uptake (kg/ha/year)	194.52 (116.14 - 354.31)
Average annual net phosphorus removed by plant uptake (kg/ha/year)	33.33 (2.19 - 51.14)
Average annual shoot nitrogen concentration (fraction dwt)	0.02 (0.01 - 0.03)
Average annual shoot phosphorus concentration (fraction dwt)	0.003 (0.000 - 0.004)

Average Monthly Yield (kg/ha/year) and Plant Stresses

Chart

Table

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

No. of harvests/year: 2.19 (normal) No. days without crop/year (days/year): 0.00

Chart

Table

Land Performance

Paddock: New Paddock, 3.6 ha

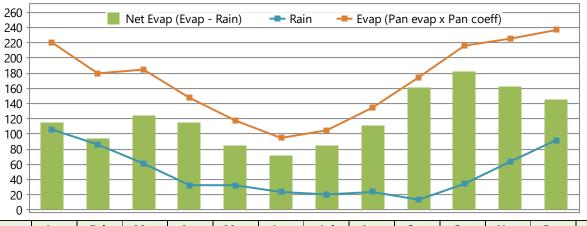
Soil Type: Grey Clay - Lake Vermont

Plant: Continuous Rhodes Grass Pasture

Salt tolerance	Tolerant
Salinity threshold EC sat. ext. (dS/m)	7.00
Proportion of yield decrease per dS/m increase (fraction/dS/m)	0.03
No. years assumed for leaching to reach steady-state (years)	10.00

Soil Salinity:

Salinity of infiltrated water (Average salinity of rainwater = 0.03 dS/m) (dS/m)	0.78
Salt added by rainfall (kg/ha/year)	86.48
Average annual effluent salt added & leached at steady state (kg/ha/year)	4242.21
Average leaching fraction based on 10 year running averages (fraction)	0.25
Average water-uptake-weighted rootzone salinity sat. ext. (dS/m)	1.46
Salinity of the soil solution (at drained upper limit) at base of rootzone (dS/m)	13.05
Relative crop yield expected due to salinity (fraction)	1.00
Proportion of years that crop yields would be expected to fall below 90% of potential due to salinity (fraction)	0.00


Average Annual Rootzone Salinity and Relative Yield:

All values based on 10 year running averages 1.2 Weighted Average 22 \checkmark Rootzone Salinity 20 1 sat. ext. 18 Salinity at Base of Salinity (dS/m) 8 01 71 45 8 \checkmark Rootzone **Relative Yield** \checkmark 8 6 0.2 4 2 0 0 2006 1970 2000 2003 1985 ~9⁸⁸ 199A 1991 ~99¹ 1973 1976 1979 1982

Averaged Historical Climate Data Used in Simulation (mm)

Location: Lake Vermont_-22.35_148.35 (2), -22.35°, 148.35°

Run Period: 01/01/1970 to 31/12/2017 48 years, 0 days

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Rain	105.9	86.2	61.2	32.7	32.6	23.7	20.5	23.7	13.6	34.5	63.6	92.0	590.2
Evap	220.5	179.8	184.8	147.7	117.8	94.8	105.0	134.9	174.5	216.2	225.4	236.8	2038.2
Net Evap	114.6	93.6	123.6	115.0	85.2	71.1	84.5	111.1	160.9	181.7	161.8	144.8	1448.0
Net Evap/day	3.7	3.3	4.0	3.8	2.7	2.4	2.7	3.6	5.4	5.9	5.4	4.7	4.0

MEDLI v2.1.0.0 Scenario Report - Full Run

24/02/2022 08:25:29

Pond System: 1 closed storage tank

New Sewage Treatment Plant - 14610.00 m3/year or 40.00 m3/day generated on average

Effluent entering pond system after any pretreatment and recycling

Average (Minimum-Maximum) influent quality calculated for 365.25 non-zero flow days, after any pretreatment and recycling.

Constituent	Concentration (mg/L)	Load (kg/year)
Total Nitrogen	30.00 (30.00 - 30.00)	438.30 (438.00 - 439.20)
Total Phosphorus	10.00 (10.00 - 10.00)	146.10 (146.00 - 146.40)
Total Dissolved Salts	1024.00 (1024.00 - 1024.00)	14960.64 (14950.40 - 14991.36)
Volatile Solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)
Total Solids	0.00 (0.00 - 0.00)	0.00 (0.00 - 0.00)

Last pond (Wet weather store): 120.00 m3

Theoretical hydraulic retention time (days)	3.00
Average volume of overflow (m3/year)	0.00
No. overflow events per year exceeding threshold* of 0.04 m3 (no./year)	0.00
Average duration of overflow (days)	0.00
Effluent Reuse (Proportion of Inflow + Net Rain Gain that is Irrigated) (fraction)	1.00
Probability of at least 90% effluent reuse (fraction)	1.00
Average salinity of last pond (dS/m)	1.60
Salinity of last pond on final day of simulation (dS/m)	1.60
Ammonia loss from pond system water area (kg/m2/year)	0.00
* The threshold is the volume equivalent to the ten 1 mm denth of water of a full need	

* The threshold is the volume equivalent to the top 1 mm depth of water of a full pond

Overflow exceedance:

Page 16

Chart

Table

Irrigation Information

Irrigation: 3.6 ha total area (assumed 100% irrigation efficiency)

	Quantity/year	Quantity/ha/year
Total irrigation applied (m3)	14610.00	4058.33
Total nitrogen applied (kg)	438.30	121.75
Total phosphorus applied (kg)	146.10	40.58
Total salts applied (kg)	14960.64	4155.73

Shandying

0.00
0.00 (0.00 - 0.00)
0.00 (0.00 - 0.00)
0.00
False

Irrigation Issues

Proportion of Days irrigation occurs (fraction)	1.00
---	------

MEDLI v2.1.0.0 Scenario Report - Full Run

Paddock Land: New Paddock: 3.6 ha

Irrigation: New Irrigation Method with 0% ammonium loss during irrigation

Irrigation triggered every 1 days

Irrigate a fixed amount of 2.00 mm each day

Irrigation window from 1/1 to 31/12 including the days specified A minimum of 0 days must be skipped between irrigation events

Soil Water Balance (mm): Grey Clay - Lake Vermont, 84.82 mm PAWC at maximum root depth

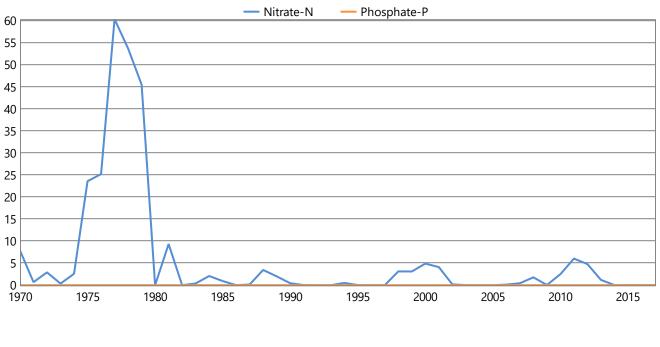
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Rain	105.9	86.2	61.2	32.7	32.6	23.7	20.5	23.7	13.6	34.5	63.6	92.0	590.2
Irrigation	34.4	31.4	34.4	33.3	34.4	33.3	34.4	34.4	33.3	34.4	33.3	34.4	405.8
Soil Evap	1.7	0.9	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7
Transpn.	91.7	81.7	76.6	54.7	46.9	40.6	45.1	56.1	66.5	66.3	79.7	92.3	798.3
Rain Runoff	29.5	24.0	21.5	7.7	10.5	4.9	6.5	6.0	1.5	4.1	6.8	16.9	139.8
Irr. Runoff	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Drainage	11.3	11.1	8.1	3.6	5.1	3.5	3.8	0.8	1.1	0.4	2.8	5.5	56.9
Delta	6.1	-0.1	-10.6	0.1	4.6	8.1	-0.4	-4.7	-22.2	-1.9	7.7	11.7	-1.7

Soil Nitrogen Balance

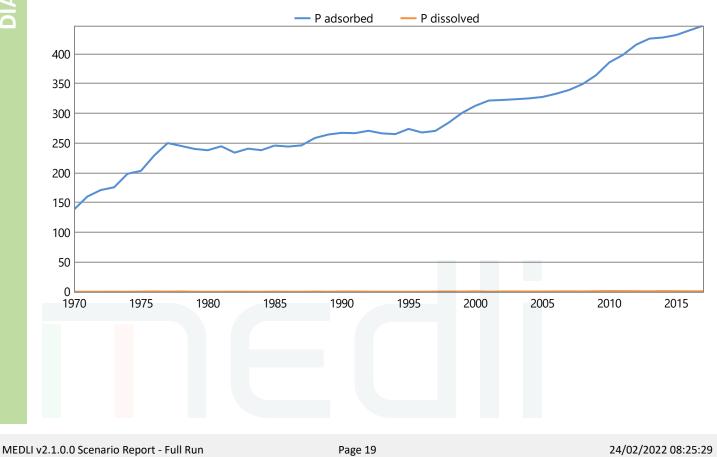
Average annual effluent nitrogen added (kg/ha/year)	121.75
Average annual soil nitrogen removed by plant uptake (kg/ha/year)	194.52
Average annual soil nitrogen removed by denitrification (kg/ha/year)	0.74
Average annual soil nitrogen leached (kg/ha/year)	5.00
Average annual nitrate-N loading to groundwater (kg/ha/year)	5.00
Soil organic-N kg/ha (Initial - Final)	3992.00 - 259.96
	36.03 - 0.03
Average nitrate-N concentration of deep drainage (mg/L)	8.79
Max. annual nitrate-N concentration of deep drainage (mg/L)	60.33

Soil Phosphorus Balance

Average annual effluent phosphorus added (kg/ha/year)	40.58
Average annual soil phosphorus removed by plant uptake (kg/ha/year)	33.33
Average annual soil phosphorus leached (kg/ha/year)	1.77E-03
Dissolved phosphorus (kg/ha) (Initial - Final)	3.70E-03 - 0.70
Adsorbed phosphorus (kg/ha) (Initial - Final)	99.72 - 447.31
Average phosphate-P concentration in rootzone (mg/L)	0.11
Average phosphate-P concentration of deep drainage (mg/L)	3.11E-03
Max. annual phosphate-P concentration of deep drainage (mg/L)	0.01
Design soil profile storage life based on average infiltrated water phosphorus concn. of 4.74 mg/L (years)	66.92


DIAGNOSTICS

Sustainability Diagnostics: Lake Vermont


Paddock Land: New Paddock: 3.6 ha

Irrigation: New Irrigation Method with 0% ammonium loss during irrigation

Annual nutrient leachate concentration (mg/L)

Annual Phosphate-P in soil (kg/ha)

Paddock Plant Performance: New Paddock: 3.6 ha

Average Plant Performance (Minimum - Maximum): Continuous Rhodes Grass Pasture

Average annual shoot dry matter yield (kg/ha/year)	12621.81 (5585.36 - 23471.68)
Average monthly plant (green) cover (fraction)	0.63 (0.58 - 0.70)
Average monthly crop factor (fraction)	0.57 (0.52 - 0.63)
Total plant cover (both green and dead) left after harvest (fraction)	1.00
Average monthly root depth (mm)	1198.02 (1185.06 - 1200.00)
Average number of normal harvests per year (no./year)	2.19 (1.00 - 4.00)
Average number of normal harvests for last five years only (no./year)	2.00
Average number of crop deaths per year (no./year)	0.00 (0.00 - 0.00)
Average number of crop deaths for last five years only (no./year)	0.00
Average annual nitrogen deficiency index (0 = no stress, 1 = full stress) (coefficient)	0.29 (0.00 - 0.76)
Average January temperature stress index (0 = no stress, 1 = full stress) (coefficient)	0.01 (0.00 - 0.06)
Average July temperature stress index (0 = no stress, 1 = full stress) (coefficient)	0.48 (0.19 - 0.71)
Average monthly water stress index (0 = no stress, 1 = full stress) (coefficient)	0.24 (0.15 - 0.44)
Average monthly waterlogging index (0 = no stress, 1 = full stress) (coefficient)	0.48 (0.19 - 0.68)
No. days without crop/year (days)	0.00

Soil Salinity - Plant salinity tolerance: Tolerant

Assumes 1.0 dS/m Electrical Conductivity = 640 mg/L Total Dissolved Salts

All values based on 10 year running averages

Salinity of infiltrated water (Average salinity of rainwater = 0.03 dS/m) (dS/m)	0.78
Salt added by rainfall (kg/ha/year)	86.48
Average annual effluent salt added & leached at steady state (kg/ha/year)	4242.21
Average leaching fraction based on 10 year running averages (fraction)	0.25
Average water-uptake-weighted rootzone salinity sat. ext. (dS/m)	1.46
Salinity of the soil solution (at drained upper limit) at base of rootzone (dS/m)	13.05
Relative crop yield expected due to salinity (fraction)	1.00
Proportion of years that crop yields would be expected to fall below 90% of potential due to salinity (fraction)	0.00

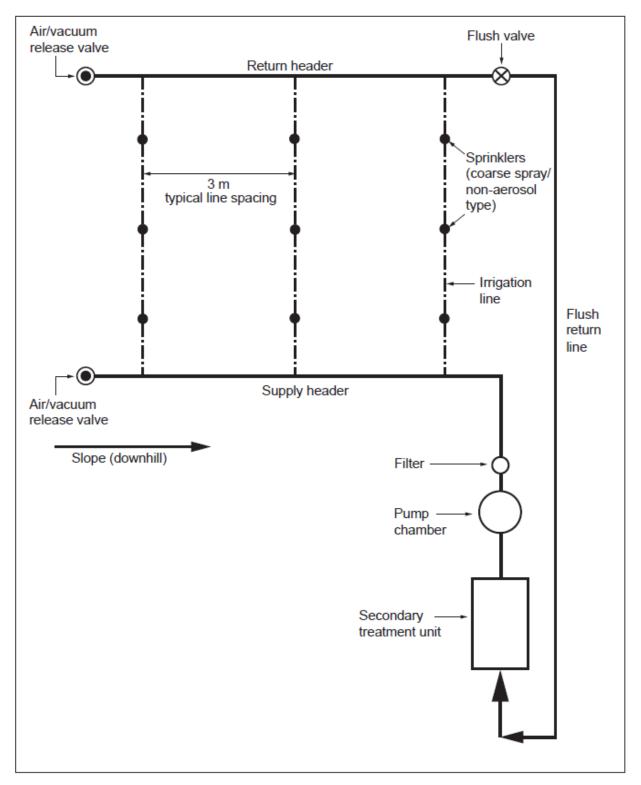
MEDLI v2.1.0.0 Scenario Report - Full Run

Run Messages

Messages generated when the scenario was run:

Full run chosen

MEDLI v2.1.0.0 Scenario Report - Full Run


24/02/2022 08:25:29

APPENDIX

EXAMPLE OF SPRAY IRRIGATION SYSTEM

Source: AS/NZS 1547:2012